What is *B* physics ? Why?

Quarks and leptons come in three "generations". Gauge bosons mediate their interactions.

- *B* physics = studies of production and decay of the bottom (*b*) quark.
- Can learn about the weak interaction between the quarks, esp. the Cabibbo-小 林-益川 (CKM) matrix.
- Interesting phenomena expected, e.g. CP.

Weak Interaction

Coupling of quarks and W^{\pm} and Z^{0} bosons Examples: • muon decay • neutron decay

Heavy quarks (*s, c, b, t*) are unstable.

Transitions across the generations are possible:

Quark flavors are not conserved in the C.C. weak int's. Mass and flavor eigenstates connected by the CKM matrix.

 $V_{ud} \quad V_{us} \quad V_{ub}$ $V_{CKM} \quad V_{cd} \quad V_{cs} \quad V_{cb} \qquad L \quad W_{\mu} \overline{U}_{i} \gamma^{\mu} V_{ij} D_{j}$ $V_{td} \quad V_{ts} \quad V_{tb}$

Need to determine the elements V_{ij} experimentally.

Introduction

Why *B* Physics at a Hadron Machine ? Because the production rates are high.

- Not only B^0 , B^+ , but also B^0_s , baryons, B_c
- Lorentz boost, $\sim 2 4$.

Vertex resolution not an issue.

CDF Detector (Run I)

- Silicon microstrip detector
 Impact parameter
 - $= (13+40/p_T) \ \mu m$
- Central tracking chamber

($p_{\rm T}$) / $p_{\rm T}$ ~ 0.001 $p_{\rm T}$

• Lepton detection

Collected ~ 110 pb⁻¹ in 1992 - 96.

- ~ 240 k J/ψ $\mu^{+}\mu^{-}$.
- Mass resolution ~ 16 MeV/ c^2 .
- ~ 20% from *B* decays, others direct / χ_c / J/ψ

Run-I CDF *B* physics results

- Mass measurements of B^+ , B^0 , B^0_s and Λ_b .
- Lifetime measurements of B^+ , B^0 , B^0_s , Λ_b .
- $B^0 \overline{B}^0$ oscillations and flavor tagging.
- $\sin(2)$ from B^0/\overline{B}^0 $J/\psi K^0_S$.
- B_c meson.
- Rare decay searches (FCNC decays)
- Inclusive *b* and *B* production.
- $b\overline{b}$ production correlations.
- *b*-quark fragmentation fractions, f_{u} , f_{d} , f_{s} ...
- Onium production (J/ ,)
 - Prompt and non-prompt (from *B*, $_{c}$) production
 - Production polarization

Lifetime Ratio $(B^+) / (B^0)$

$B^{0}-\overline{B}^{0}$ Oscillation

- 2nd order weak interaction.
- Decay probability:

- $P_{B^{0}} = \frac{1}{2\tau} e^{-t/\tau} (1 + \cos mt) \qquad \text{Unmixed}$ $P_{B^{0}} = \frac{1}{B^{0}} (t) = \frac{1}{2\tau} e^{-t/\tau} (1 \cos mt) \qquad \text{Mixed}$
- Oscillation frequency = $\Delta m = m_H m_L$: $m_q |V_{tq}|^2$ • Eventually $m_s / m_d |V_{ts}| / |V_{td}|$ with less theory uncertainty

Ingredients for $B^0 - \overline{B}^0$ Oscillation Measurements

- Proper decay time
- Decay flavor ($B^0 = l^+ \vee X \text{ vs } \overline{B}^0 = l^- \vee X$)
- Production flavor, b or \overline{b} ? Flavor tagging

Flavor tagging is the hardest part (for CDF). Conventional approach: b and \overline{b} are produced in pairs. identify the flavor of the other Bsemileptonic decay leptons, kaons, jet charge infer the flavor of the signal B

Flavor Tagging (cont'd)

Exploit charge-flavor correlation with a nearby pion (Gronau, Nippe, Rosner). Example: D^{*+} D^0 ⁺.

Since $B^* \setminus B$, use pions from $B^{**} \quad B$ (resonant) or _____ Fragmentation $b \quad B$ (non-resonant).

The correlations are the same if it is resonant or not.

Tagging Dilution

No tag is perfect. e.g. for lepton tag:

- Leptons from $b c l^+ s$
- B^0 , B^0_{s} mixes.
- Fakes.

Probability of misidentification W**Dilution** D = 1 - 2W.

Oscillation amplitude reduced by a factor *D*. (unmixed - mixed) / total = cos(mt)

Tag effectiveness = D^2 , $D \cos(m t)$ is the efficiency of the tag.

- Now the amplitude is the quantity of interest.
- Final state = $J/\psi K_{S}^{0} \mu^{+}\mu^{-} + -$ "Trivial"
- Initial state, B^0 or \overline{B}^0 ? Flavor Tagging
- Decay time: Not necessary at CDF, but helps.

 $J/\psi K_{S}^{0} \sim 400$ signal ev. / 110 pb⁻¹ B^0/B^0

Not much constraint now, but should be interesting in Run-II.

1

Rare Decays $B = K^{(*)} l^+ l^-$

- *b s* FCNC transition
- Z⁰ penguin and box diagram in addition to EM penguin.
- $|V_{ts}|$
- SM predicts B.R. ~ 10^{-7} to 10^{-6} .
- New physics could enhance it.
- Has yet to be observed.

I can be resonant, e.g. J/ψ , ψ (2S). Indistinguishable from *b* $c\bar{c}s$ Look at non-resonant mass region.

PRL <u>83</u>, 3378 (1999)

4 candidates

- 0 candidate
- BR < 5.2 X 10⁻⁶ @90% CL BR < 4.0 X 10⁻⁶ @90% CL
- SM: $(5.9 \pm 2.1) \times 10^{-7}$
- - SM: $(2.0 \pm 0.7) \times 10^{-6}$

Expected signal ~ 0.5 event each.

Should see a handful of signal events in Run II.

Even Rarer Decays: B^0 , B^0_s l^+l^-

- V_{td} for B^0 , V_{ts} for B^0_s
- Helicity suppressed.
- B.R. very small.

SM predictions:

- B^0 $\mu^+\mu^-$ (1.5 ± 1.4) x 10⁻¹⁰
- $-B_{s}^{0}$ $\mu^{+}\mu^{-}$ (3.5 ± 1.0) x 10⁻⁹
- B^0 e⁺ e⁻ (3.4 ± 3.1) x 10⁻¹⁵
- $-B_{s}^{0} = e^{+}e^{-}$ (8.0 ± 3.5) x 10⁻¹⁴

B Physics and CDF Run II

Accelerator

- s = 2000 GeV
- 6 bunches 36, 108.
- New 120 GeV Main Injector
- Luminosity = $10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- $L dt = 2 fb^{-1}$ (2 years)

Detector

- Tracking system
- FE electronics
- Trigger/DAQ
- Plug calorimeter
- Extended muon coverage Retained good momentum resolution & lepton ID.

CDF-II silicon detectors

SVX II

- Radii 2.5 cm to 11 cm
- 5 layers
- Double-sided, 90° and 1.2° stereo
- Main vertex detector

Intermediate silicon layers (ISL)

- 3 more layers at R = 20 29 cm
- Construction similar to SVX II
- Precision tracking to higher eta.
- Aid linking from COT to SVX.

Significant Japanese contributions :SVX IIHiroshima, OkayamaISLOsaka City, Tsukuba

Can trigger on all-hadronic final states such as B^0 + -, B^0_s D_s^- +.

Use silicon information at the 2nd level trigger

- Find a track in the main tracker COT.
- Extrapolate toward the SVX.
- Find SVX hits along the road.
- Calculate impact parameter wrt the primary vertex (beam spot).
- Resolution ~ 40 μm at 1 GeV/c.

• B flavor tagging

Layer 00

Detector

- Single-sided
- At radius ~ 1.6 cm, minimize effect of multiple scattering.
- Can operate up to ~ 5 fb^{-1}

Purpose

Improve impact parameter resolution :

~ 9 μ m for high p_T 10 μ m alignment

Impact of TOF and Layer 00 on $B^0_{\rm s}$ mixing

Signal

- B_{s}^{0} D_{s}^{-} +, D_{s}^{-} + + -
- ~20 k events / 2 fb⁻¹ \widehat{b} TOF Significance
- Improves flavor tags.
- Helps at lower x_s. Layer 00
- Improves vertex determination.

proper time resolution.

• Helps at higher x_s.

Once the oscillations are established, m_s will be determined to a few %.

Can be the first meaningful test of the unitarity triangle.

Run II (cont'd) Probing angle (phase of V_{ub})

- B⁰ + once thought to be the mode for sin2(-).
 (assuming b u tree dominance over penguin)
- CLEO finds much larger K⁻ $\,$ + and tiny $\,$ + $\,$ -.
- Not just small rates, but also means penguin pollution. Relation to sin(2) less clear.
- Strategies proposed, but are challenging experimentally...

New approach : R. Fleischer, Phys. Lett. B 459, 306 (1999).Throw in B^0_{s} K^+K^- , measure asymmetries in both B^0 and B^0_{s} .

In general, for a decay B^0 f (f = CP eigenstate) :

 $A_{CP}(t) = A^{dir} \cos(mt) + A^{mix} \sin(mt).$

Angle (phase of $V_{\rm ub}$) continued Four CP asymmetries to measure. (= sin)• $A^{dir}(B^0 + -) = -2d \sin \sin (1 - 2d \cos \cos + d^2)$ • $A^{\min}(B^0 + -) = [\sin^2(+) - 2d\cos^2(\sin^2(+)) + d^2\sin^2(2)]$ $/ [1 - 2d \cos \cos + d^2]$ • $A^{dir}(B_{s}^{0} K^{+}K^{-}) \sim 2(\frac{2}{d}) \sin \sin$ If no penguin, $\mathbf{A^{dir}} = \mathbf{0} \qquad (B^0, B^0_s)$ • $A^{\text{mix}}(B^0, K^+K^-) \sim 2(\frac{2}{d}) \cos \sin dt$ $\mathbf{A}^{\min} = \sin 2(+) (B^0)$ Four unknowns to extract : $A^{\text{mix}} = \sin(2)$ (B^0)

- , = angles of the unitarity triangle.
- d = ratio of penguin (P) to tree (T) decay amplitudes, = phase of "P/T"

$$d e^{i} |V_{cb}/V_{ub}| / (1 - 2/2) [P / (T+P)]$$

Expect ~5 k B^0 + -, ~10 k B^0_s $K^+K^$ angle to ~10°.

Summary

- CDF does *B* physics pretty well.
- Run-I results cover virtually all aspects of *B* physics.
- Run II should produce further interesting results, in particular
 - sin(2) precision of $\pm (0.043 \text{ to } 0.084)$.
 - m_s up to ~ 40 ps⁻¹.
 - angle to ± 10 degrees.