CDF実験の現状と展望

金 信弘 筑波大学物理学系 For the CDF Collaboration

日本物理学会(沖縄国際大学) 2001年9月23日

> はじめに CDF実験の成果 CDF実験の現状 CDF実験の今後の計画

CDF実験の主要な成果

陽子反陽子衝突実験(米国フェルミ国立加速器研究所)

1987年 実験開始
1994年 トップクォーク発見
1998年 Bc中間子発見
2001年3月 実験再開
ビッグス粒子探索
B中間子のCP非保存
トップクォークの物理

Higgs Mass Constraint

From M_{top}(CDF,D0), M_W(CDF,D0,LEPII) and other electroweak results,

 $M_{Higgs} < 215 \text{ GeV/c}^2$ at 95% C.L.

Ref. LEP ElectroweakWorking Group, CERN EP/2000-016

ヒッグス粒子(標準模型)の生成断面積と崩壊分岐比

生成断面積

生成断面積x分岐比

CDF Run I VH searches (106 pb-1)

VH Production Cross Section Limit

CDF PRELIMINARY Run I

2TeV陽子反陽子衝突実験(米国フェルミ国立加速器研究所)

2000年10月~11月 Commissioning Run 試運転 2001年4月~2003年 Run2a(2fb⁻¹) 2004年~2007年 Run2b(>13fb⁻¹)

Run II Plans and Prospects

	Run I	Run IIa	RunIIb
Period	1992-96	2001-03	2004-07
CM Energy	1.8 TeV	2 TeV	2 TeV
Luminosity(cm ⁻² sec ⁻¹)	10 ³¹	$2 \ge 10^{32}$	5 x 10 ³²
Integrated Luminosity	0.11 fb ⁻¹	2 fb ⁻¹	> 13 fb ⁻¹
Number of Bunches	6 x 6	36 x 36→140 x 103	
Bunch Period	3.5 µsec	$396 \text{ nsec} \rightarrow 132 \text{ nsec}$	c
Number of tt events			
W+4jet(1b-tag)	30	1,000	7,000
$\Delta M_{TOP} (GeV/c^2)$	6.5	3	
$\Delta M_W (MeV/c^2)$	79	40	
M _{HIGGS} Reach :95%CL limit		120 GeV/c ²	190 GeV/c ²
:3σ evidence			180 GeV/c ²

Recent Machine Performance

February 1, 2001

CDF Jets

Et of highest energy jet 3 jet event Leading Jet Et et 1st jet cone 0.7 Nent = 1103382 Mean = 11.59 10 RMS = 7.732 10 1.1 million events 10 Th. 10 wy Multing 10 Et = 179.24 GeV 1 10 20 30 40 50 60 70 80 90 100 Jet E_{T} (GeV)

CDF Tracking Performance

CDF Performance

 $M(J/\psi) = 3.080 + 0.001 \text{ MeV}$ (no dE/dx corrections applied)

CDF Performance : W candidates

Run II Physics Goals

Understanding Electroweak Symmetry Breaking

- \succ EW Measurements (M_W, M_{top})
- Higgs Boson Search
 - ➤ the Standard Model

> SUSY

- **Given Study CP Violation and the CKM Matrix**
 - > Sin2 β Measurement
 - \succ X_s Measurement
- Searches for New Phenomena

Study CP Violation and CKM Matrix

 B_s mixing measurement is important for complete picture of the Unitary triangle.

CP Violation & CKM Matrix (cont.)

With data by next summer, > B_s mixing : SM prediction region fully covered. > $\delta sin 2\beta \sim 0.12$

ヒッグス粒子探索 についての記事

CERN研究所(ジュネーブ)で ヒッグス粒子の候補事象が見え た。これが事実かどうかはフェ ルミ研究所での陽子反陽子衝 突実験で明らかにできる。

Electroweak Precision Measurements

Γ_W (from W high mass tail) 2.04 +- 0.15 GeV (CDF), 2.22 +- 0.17 GeV (D0) SM : 2.0937 +- 0.0025 GeV

今後のヒッグス粒子探索

• $M_H < 130 \text{ GeV/c}^2$ $p\overline{p} \rightarrow WHX \rightarrow l \nu + b\overline{b} + X$ • $125 < M_H < 160 \text{ GeV/c}^2$ $pp \rightarrow WHX \rightarrow l \nu + W^* W^* + X$ (like-sign dilepton +jets) • $150 \text{ GeV/c}^2 < M_H$

$$pp \to HX \to WW X \to l \ v \ l \ v X$$

RUN2A(~2003)

95%信頼度でM_H<120 GeV/c²検出可能 RUN2B(2004~)

95%信頼度でM_H<190 GeV/c²検出可能 M_H<180 GeV/c²の証拠(3*σ* evidence)

まとめ

CDF実験RUN2(2001年~)で以下の成果が期待される。

- 2002年にB_s mixingの測定ができる。またsin2βが誤差0.12で測定できる。
- ・ 2年間の実験で1000 tT事象が収集され、 $\Delta M_{top} \sim 3 \text{GeV/c}^2 \tilde{C} M_{top} \tilde{M}_{top}$ 測定できる。同時に $\Delta M_W \sim 40 \text{ MeV/c}^2 \tilde{C} M_W \tilde{M}_W$ にできる。これらよ り $\Delta M_H \sim 0.3 M_H \tilde{C} C V \tilde{C} \tilde{C} \tilde{M}_W$
- 2年間の実験で
 - 95%信頼度で M_H < 120GeV/c²のヒッグス粒子検出可能。
- さらに3年間のデータ収集によって
 - 95%信頼度で M_H < 190GeV/c²のヒッグス粒子検出可能。
 - $M_H < 180 \text{GeV/c}^2$ のヒッグス粒子の生成の証拠(3 σ)。