#### Present Status and Recent Results of Tevatron/CDF Run II

Kazuhiro Yamamoto (Osaka City University) for CDF II Collaboration

KEK Theory Meeting on Collider Physics February 21st, 2003

> Tevatron/CDF Run II Upgrade Present Status Preliminary Physics Results Prospects and Summary

# Fermilab Accelerator Complex





# Fermilab Accelerator Complex (2)

Tevatron Run 2 Upgrade

- Higher Energy Collisions  $\sqrt{s} = 1.8 \text{ TeV} \rightarrow 1.96 \text{ TeV}$
- Increased number of p and  $\overline{p}$  bunches 6 x 6  $\rightarrow$  36 x 36
- Shorter bunch spacing  $3.5 \ \mu s \rightarrow 396 \ ns$
- Newly built {
   150 GeV Main Injector
   8 GeV Recycler

for increasing luminosity at Tevatron

# **Tevatron Status**

Tevatron Run 2 operation started in March 2001

#### **Present Status**

- Now achieving typical peak luminosity of 2.5 ~ 3.5 x 10<sup>31</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Run II Best : 3.8 x 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup> on Nov. 08, 2002.
- 170 pb<sup>-1</sup> delivered, 125 pb<sup>-1</sup> recorded.
- 1 month shutdown from Jan. 13, 2003
   → recovered on Feb. 10.

#### Luminosity goals for Run 2a

- Peak luminosity of 8 x 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Integrated luminosity of 2 fb<sup>-1</sup>



### **CDF II Detector**



# CDF II Detector (2)

#### Installing Silicon Detectors

#### Rolling into the Collision Hall



# CDF II Tracking

All tracking detectors inside the solenoid are new.

- Solenoid magnet (1.4T)
- Drift chamber (Central Outer Tracker, COT) 30k sense wires
- Silicon detectors (SVXII, ISL, L00)
   8 tracking layers (SVXII : 5, ISL : 2, L00 : 1)

• 
$$\delta p_T / p_T^2$$
   
(GeV<sup>-1</sup>)  $\begin{cases} \sim 0.1\% (|\eta| < 1.0, \text{COT+ISL+SVXII}) \\ \sim 0.4\% (1.0 < |\eta| < 2.0, \text{ISL+SVXII}) \end{cases}$ 



## CDF II Calorimeters, Muon Detectors

- Calorimeters
  - EM (Central + End-Plug)
  - Hadron (Central + End-Wall + End-Plug)
  - New End-Plug Calorimeters  $(|\eta| < 3.6)$
- Muon Detectors
  - New forward detectors

 $(1.0 < |\eta| < 1.5)$ 



# CDF II Trigger Overview

#### Level 1:

- "Hardware" trigger
- Calorimeters, COT tracks(XFT), Muons
- 50kHz accept rate (currently ~12kHz)

#### Level 2:

- "Mostly hardware" trigger
- Trigger algorithms run on custom Alpha boards.
- Silicon track information added (SVT)
- 300Hz accept rate (currently ~300Hz)

#### Level 3:

- "Software" trigger
- $\simeq 250$  dual-CPU Linux boxes
- 50Hz accept rate (currently ~50Hz)

Typical event size : 250 ~ 300kB Max logging rate : 20MB/sec



# XFT (eXtremely Fast Tracker)

- Track trigger on Level 1
- momentum resolution  $\Delta p_T / p_T^2 = 1.65\%$  GeV<sup>-1</sup> (using data)
- angular resolution  $\Delta \phi = 5.1 \text{ mrad}$  (using data, better than design)



# Silicon Vertex Trigger (SVT)

- Track-based trigger on Level 2
- Combines COT tracks (from XFT) with silicon hits
- Allows triggering on displaced impact parameters/vertices





# **CDF II Collaboration**



### $Z \rightarrow e e$

Reconstruction of high E<sub>T</sub> electron pairs
 (Inclusive high-E<sub>T</sub> central electron trigger : E<sub>T</sub> > 18 GeV, P<sub>T</sub> > 9 GeV/c)



σ(Z)·B(Z → ee) = 269.0 ± 6.3(stat) ± 15.1(sys) ± 26.9(lum) pb
 NNLO prediction : 250.2 pb

 $Z \rightarrow e e (2)$ 

#### Forward-backward Charge Asymmetry

$$q\overline{q} \rightarrow Z/\gamma \rightarrow e^- e^+$$
  
$$A_{FB} = \frac{N_F^e - N_B^e}{N_F^e + N_B^e}$$

- Probe of relative strengths of vector and axial couplings over Q<sup>2</sup> range
- Probe for additional heavy neutral gauge bosons



 $W \rightarrow e v$ 

- Isolated electron
- Large  $E_T$  and  $\not\!\!\!E_T$



$$E_T = 35 \text{ GeV}, \not \not \! E_T = 38 \text{ GeV}$$



```
W \rightarrow e \nu (2)
```



Cross section measurement (preliminary)  $\sigma(W) \cdot B(W \rightarrow ev)$   $= 2.69 \pm 0.01(stat) \pm 0.09(sys) \pm 0.27(lum) \text{ nb}$ NNLO prediction : 2.73 nb ( $\sqrt{s} = 1.96\text{TeV}$ )

$$\begin{split} R &= \sigma(W) \cdot B(W \rightarrow ev) \ / \ \sigma(Z) \cdot B(Z \rightarrow ee) \\ &= 9.93 \pm 0.24(stat) \pm 0.58(sys) \end{split}$$

• W mass is extracted from a fit to transverse mass distribution (combined with  $\mu\nu$  mode).

 $\Delta M \sim 30 MeV/c^2$  with 2fb<sup>-1</sup> (competitive with combined LEP2 result : 39MeV/c<sup>2</sup>)

### W and Z Measurements with Muons

• Inclusive high- $P_T$  muon trigger sample ( $P_T > 18 \text{ GeV/c}$ )



•  $\sigma(W) \cdot B(W \to \mu \nu) = 2.70 \pm 0.04(\text{stat}) \pm 0.19(\text{sys}) \pm 0.27(\text{lum}) \text{ nb}$ 

(Run 2 preliminary)

•  $R = \sigma(W) \cdot B(W \to \mu \nu) / \sigma(Z) \cdot B(Z \to \mu \mu) = 13.66 \pm 1.94(stat)^{+0.14}_{-0.13}(sys)$ 

# Measurements with Low $p_T$ Muons

• Di-muon trigger sample ( $P_T > 1.5 \text{ GeV/c}$ )

 $J/\psi \rightarrow \mu\mu$ 





• Large sample of  $J/\psi$  is a good tool of physics analysis and tracking calibration.

### Measurements of B Masses

• Cross check of tracking calibration using  $J/\psi$  decay channels

 $m(B^+) = 5280.6 \pm 1.7(stat) \pm 1.1(sys) MeV/c^2$  (PDG : 5279.0 ± 0.5 MeV/c<sup>2</sup>)

 $m(B^0) = 5279.8 \pm 1.9(stat) \pm 1.4(sys) MeV/c^2$  (PDG : 5279.4 ± 0.5 MeV/c<sup>2</sup>)

Starting to be competitive . . .  $m(B_S^0) = 5360.3 \pm 3.8(stat) + 2.1 - 2.9(sys) MeV/c^2$  (PDG : 5369.6 ± 2.4 MeV/c<sup>2</sup>)



### Fully Hadronic B Signals with the SVT Trigger



# **B** Physics Projections



• measurement of sin2β

 $B^0 \rightarrow J/\psi K_S$ 

 $\sigma(\sin 2\beta) \sim 0.05$  with 2 fb<sup>-1</sup>

• 
$$B_s^0 - \overline{B}_s^0$$
 mixing ( $\leftarrow$  unique at Tevatron)

 $B_s^0 \rightarrow D_s \pi, D_s \pi \pi$ 

CDF sensitivity at  $5\sigma$  for  $x_s < 60$ ( $x_s = \Delta m_s / \Gamma_s$ )

Latest LEP limit :  $x_s > 21$  ( $\Delta m_s > 14.4$  ps<sup>-1</sup>) SM expectation :  $x_s < 35$ 

### Measurements of Charm Mesons

• SVT trigger collects charm events as well as bottom events.



• Ratios of Cabibbo suppressed *D*<sup>0</sup> decays

 $\Gamma(D^{0} \rightarrow KK)/\Gamma(D^{0} \rightarrow K\pi) = 11.17 \pm 0.48(\text{stat}) \pm 0.98(\text{sys}) \% \quad (\text{PDG} : 10.83 \pm 0.27 \%)$   $\Gamma(D^{0} \rightarrow \pi \pi)/\Gamma(D^{0} \rightarrow K\pi) = 3.37 \pm 0.20(\text{stat}) \pm 0.16(\text{sys}) \% \quad (\text{PDG} : 3.76 \pm 0.17 \%)$ already competitive with CLEO2 results starting to be competitive with PDG averages

### Measurements of Charm Mesons (2)



 Expect O(10<sup>7</sup>) fully reconstructed D meson decays in 2 fb<sup>-1</sup>

> Foresee a quite interesting charm physics program CP asymmetries and mixing in D sector, rare decays, ...

### Top Event Candidate



| <b>e</b> +        | E <sub>T</sub> = 73 GeV |  |  |  |
|-------------------|-------------------------|--|--|--|
| e-                | E <sub>T</sub> = 56 GeV |  |  |  |
| Jet 1             | E <sub>T</sub> = 35 GeV |  |  |  |
| Jet 2             | E <sub>T</sub> = 34 GeV |  |  |  |
| MET               | E <sub>T</sub> = 43 GeV |  |  |  |
| M(e+e-) = 118 GeV |                         |  |  |  |



- 800  $t\bar{t}$  events with *b*-tagging are expected with 2 fb<sup>-1</sup>
- Expect preliminary  $\sigma_{t\bar{t}}$  and  $M_{top}$  by Spring 2003

### Higgs at the Tevatron



Low-mass SM Higgs (  $\leq 130 \text{GeV/c}^2$ )  $q\overline{q}' \rightarrow Wh \rightarrow \ell \nu b\overline{b}$  $q\overline{q} \rightarrow Zh \rightarrow \ell^+ \ell^- b\overline{b}, \nu \overline{\nu} b\overline{b}$ 

High-mass SM Higgs (130GeV/c<sup>2</sup> ~ 190GeV/c<sup>2</sup>)

$$gg \to h \to W^* W^* \to \ell^+ \ell^- \nu \overline{\nu}$$
$$q\overline{q}' \to Wh \to \ell^\pm \nu W^* W^* \to \ell^\pm \nu \ell^\pm \nu j j$$
$$q\overline{q} \to Zh \to \ell^\pm \ell^\mp W^* W^* \to \ell^\pm \ell^\pm \ell^\pm \nu j j$$

# Higgs at the Tevatron (2)



Sensitivity reevaluation in progress using fine-tuned full detector simulation

# Top / Electroweak Projections

• √s = 1.96TeV M<sub>W</sub> (GeV/c<sup>2</sup>)  $\sigma(W), \sigma(Z) \sim 10\%$  higher 80.6  $\sigma(t\bar{t}) \sim 30\%$  higher LEP2 + Tevatron Run-I 80.5 • With 2 fb<sup>-1</sup> (Run 2a) 250 **RUN-IIa** ←  $\Delta M_{W} \sim 30 \text{ MeV/c}^2$ 80.4 500 1000  $\Delta M_{top} \leq 3 \text{ GeV/c}^2$ LEP1+SLD+vN 80.3  $\Rightarrow \Delta(\log M_h) \sim \log 1.6$  $(1/1.6 M_h < M_h < 1.6 M_h)$ Thiggs Mass Certic 80.2 With 10 fb<sup>-1</sup> 80.1  $\Delta M_W \sim 20 \text{ MeV/c}^2$  $\Delta M_{top} \lesssim 2 \text{ GeV/c}^2$ M<sub>W</sub>-M<sub>top</sub> contours : 68% CL **140** 150 130 **160** 170 **180** 190 200  $\Rightarrow \Delta(\log M_h) \sim \log 1.3$  $M_{top} (GeV/c^2)$ 

### - From Run I Results - Direct $J/\psi$ Production

• Observed large excess of direct production of  $J/\psi$  and  $\psi(2S)$  compared with QCD prediction with color singlet model(CSM).



CDF Collaboration, Phys. Rev. Lett. 79 (1997) 572., Phys. Rev. Lett. 79 (1997) 578.

### - From Run I Results - W + heavy-flavor jets

• Excess of W + 2,3 jet events compared with SM

➤ One of these was tagged by both

displaced vertex tag (SECVTX)

• soft lepton tag (SLT).

|                                           |                 |                 |                 |                 | •                    |
|-------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------------|
| Source                                    | <i>W</i> +1 jet | W+2jet          | W+3jet          | $W + \ge 4$ jet |                      |
| SECVTX mistags in<br>events with SLT tags | $0.28\pm0.03$   | $0.09 \pm 0.01$ | $0.07\pm0.01$   | $0.02\pm0.00$   |                      |
| Non-W                                     | $0.57 \pm 0.05$ | $0.13\pm0.03$   | $0.00\pm0.00$   | $0.00\pm0.00$   |                      |
| WW,WZ,ZZ                                  | $0.02\pm0.02$   | $0.13\pm0.06$   | $0.01\pm0.01$   | $0.00\pm0.00$   | Needineetiestie      |
| Single top                                | $0.12\pm0.04$   | $0.24\pm0.05$   | $0.07\pm0.02$   | $0.02\pm0.00$   | Need investigation   |
| Wc                                        | $0.88 \pm 0.29$ | $0.24\pm0.14$   | $0.14\pm0.10$   | $0.00\pm0.00$   | with high-statistics |
| Wcc                                       | $0.41\pm0.13$   | $0.25\pm0.09$   | $0.13\pm0.06$   | $0.00\pm0.00$   |                      |
| Wbb                                       | $1.58\pm0.33$   | $1.07\pm0.26$   | $0.19\pm0.09$   | $0.01\pm0.00$   | data in Run II       |
| $Z \rightarrow \tau \tau$                 | $0.00\pm0.00$   | $0.00\pm0.00$   | $0.00\pm0.00$   | $0.00\pm0.00$   |                      |
| Zc                                        | $0.01\pm0.00$   | $0.00\pm0.00$   | $0.00\pm0.00$   | $0.00\pm0.00$   | 44+0                 |
| Zcc                                       | $0.01\pm0.00$   | $0.01\pm0.00$   | $0.01\pm0.00$   | $0.00 \pm 0.00$ | $74.4 \pm 0.6$       |
| $Zb\overline{b}$                          | $0.08\pm0.02$   | $0.05\pm0.02$   | $0.02\pm0.01$   | $0.00 \pm 0.00$ |                      |
| $t \overline{t}$                          | $0.04\pm0.02$   | $0.48\pm0.19$   | $1.08 \pm 0.40$ | $1.42 \pm 0.49$ |                      |
| M prediction (supertag)                   | $4.00 \pm 0.50$ | 2.69±0.41       | 1.71±0.40       | 1.47±0.51       |                      |
| Data (supertag)                           | 1               | 8               | 5               | 2               |                      |

CDF Collaboration, Phys. Rev. D65 (2002) 052007

### - From Run I Results - Rapidity Distribution of $t\bar{t}$ Pair



# **Tevatron Plan and Luminosity Prospects**

#### Run 2a

#### 2003

- One month shutdown from January 13  $\rightarrow$  recovered on February 10
  - Increase C0 aperture
  - Others (dampers, MI, vacuum, etc.)
- During 2003
  - Complete Recycler work
  - Integrate Recycler into operation
  - Expect a delivered integrated luminosity of ~300 pb<sup>-1</sup>

#### Run 2a goal

- Typical peak luminosity of 8 x 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Integrated luminosity of 2 fb<sup>-1</sup> over 2 ~ 3 year period

# Tevatron Plan and Luminosity Prospects (2)

#### After 2 fb<sup>-1</sup> (Run 2b)

- Increase anti-proton intensity
  - More protons on target
  - Better collection and transfer efficiency
- Peak luminosity up to 4 x 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Silicon detector replacement at CDF and D0 (Japan group is contributing to Run 2b silicon detector (SVXII-b) at CDF)
- Integrated luminosity of 6.5 ~ 11 fb<sup>-1</sup> during ~4-year running (~2008)

#### Luminosity Prospects (fb<sup>-1</sup>)

| FY    | base | stretch |
|-------|------|---------|
| 2002  | 0.08 | 0.08    |
| 2003  | 0.2  | 0.32    |
| 2004  | 0.4  | 0.6     |
| 2005  | 1.0  | 1.5     |
| 2006  | 1.5  | 2.5     |
| 2007  | 1.5  | 3.0     |
| 2008  | 1.5  | 3.0     |
| Total | 6.5  | 11.0    |

### Summary

- Fermilab accelerators and collider detectors were successfully upgraded. Run 2 started in March 2001.
- Collider detectors are working well.
- We are accumulating physics data of pp collisions. Data analyses are also in progress. Some preliminary results were presented. The updated results will be shown at the upcoming high energy conferences.
- Luminosity of Tevatron is being improved. Hopefully, integrated luminosity of ~ 300 pb<sup>-1</sup> in 2003, 2 fb<sup>-1</sup> in 2 ~ 3 years, 6.5 ~ 11 fb<sup>-1</sup> in ~2008.

# **Backup Slides**

### **Tevatron Parameters and Performance**

| Parameter                  | Run Ib | Now<br>(Nov. 2002) | Run 2a<br>Goals | unit                                              |
|----------------------------|--------|--------------------|-----------------|---------------------------------------------------|
| # of bunches               | 6x6    | 36x36              | 36x36           |                                                   |
| Protons/bunch              | 230    | 200                | 270             | 10 <sup>9</sup>                                   |
| Antiprotons/bunch          | 55     | 26                 | 30              | 10 <sup>9</sup>                                   |
| Total Antiprotons          | 330    | 900                | 1080            | 10 <sup>9</sup>                                   |
| Peak Pbar production rate  | 60     | 130                | 200             | 10 <sup>9</sup> /hour                             |
| Proton emittance           | 23     | 20                 | 20              | π <b>mm-mr</b>                                    |
| Pbar emittance             | 13     | 18                 | 15              | π <b>mm-mr</b>                                    |
| Beam energy                | 900    | 980                | 1000            | GeV                                               |
| Bunch length (proton, rms) | 0.6    | 0.61               | 0.37            | т                                                 |
| Bunch length (pbar, rms)   | 0.6    | 0.54               | 0.37            | т                                                 |
| Typical luminosity         | 0.16   | 3.2                | 8.1             | 10 <sup>31</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| Integrated luminosity      | 3.2    | 5                  | 16              | pb <sup>-1</sup> /week                            |

- From Run I Results - Direct  $J/\psi$  Production (2)

• Inclusion of the color octet model seems to fit the spectrum, but . . .



M. Beneke and M. Krämer, Phys. Rev. D55 (1997) R5269

- From Run I Results - Direct  $J/\psi$  Production (3)

• Prediction of polarization disagrees with measurements at high- $p_T$ .



CDF Collaboration, Phys. Rev. Lett. 85 (2000) 2886.