

Recent *B* Physics Results from CDF

Tomonobu Tomura (University of Tsukuba)

2010/09/01

Outline

•Updated Measurement of the CP Violating Phase β_s in $B_s \rightarrow J/\psi \phi$

and others

Tevatron Run II

- No longer the world's highest-energy particle collider...
- Proton-antiproton collisions at sqrt(s) = 1.96 TeV
- Tevatron is performing really well

Peak luminosity: ~ 4.0×10³² cm⁻² s⁻¹ cpv from b factories to tevatron and lhcb

2010/09/01

cpv from b factories to tevatron and lhcb

CDF II Detector

- 8 layer silicon vertex detector
- 8 super layer drift chamber
- 1.4T solenoid
- Good particle identification (K, π)
- Central/Wall/Plug calorimeters
- Scintillator + drift chamber muon detectors

2010/09/01

Gluon Splitting

B Production at Tevatron

Flavor Creation (annihilation)

BEAM REMNANT

mm

 $B^{0}, B^{+}, B^{0}, B^{*}, B^{*}, A_{b}$

 B_s^0

р

hadron species

- $B_{d'} B_{\mu} B_{c'} B_{s'}$ and Λ_{b}
- $\sigma_b = 29.4 \pm 0.6 \pm 6.2 \ \mu b \ (|\eta| < 1)$ (ČDF)
- Huge cross sections compared to the B-factories, but proportionally large backgrounds as well

р

Triggers for **B** Physics

- Since σ(*bb*) << σ(*pp*), events have to be selected with specific triggers.
- Trigger requirements: large bandwidth, background suppression, dead-time-less
 - Single-/Di-lepton : J/ψ modes
 - High p_T lepton or two leptons with lower p_T
 - Lepton + displaced track : semileptonic sample
 - $p_T(e/\mu) > 4 \text{ GeV}/c$
 - *p_T*(Trk) > 2 GeV/*c*
 - 120 μ m < d0(Trk) < 1 mm
 - Two displace tracks : hadronic sample
 - *p_T*(Trk) > 2 GeV/*c*
 - 120 μ m < d0(Trk) < 1 mm
 - $\Sigma \rho_T > 5.5 \text{ GeV}/c$

Neutral B_s System

Time evolution of B_s flavor eigenstates described by Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

Diagonalize mass (M) and decay (Γ) matrices \rightarrow mass eigenstates:

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are also different: $\Delta m_s = m_H - m_L \approx 2|M_{12}|$ $\rightarrow B_s$ oscillates with frequency Δm_s V_{ts} W Ь precisely measured by B u,c,tu,c,i

MATTE

 V_{ts}

W

- CDF $\Delta m_s = 17.77 \pm 0.12 \text{ ps}^{-1}$
- DØ $\Delta m_s = 18.56 \pm 0.87 \text{ ps}^{-1}$
- Mass eigenstates have different decay widths

$$\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2 |\Gamma_{12}| \cos \phi_s \quad \text{where} \quad \phi_s^{\text{SM}} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$$

2010/09/0

- CP violation phase β_s in SM is predicted to be very small, $O(\lambda^2)$
- New physics particles running in the mixing diagram may enhance β_s
- large $\beta_s \rightarrow$ clear indication of New Physics! 2010/09/01 cpv from b factories to tevatron and lhcb

- Measurements:
 - $B_{\rm s}$ lifetime $\tau_{\rm s}$
 - B_{sH} and B_{sL} decay width difference $\Delta\Gamma_s$
 - CP violating phase β_s
- Three different angular momentum final states:
 - $L=0, 2 \rightarrow CP$ even
 - Short lived or light B_s
 - $L=1 \rightarrow CP \text{ odd}$
 - Long lived or heavy B_s
- Three decay angles $\vec{\rho} = (\theta, \phi, \psi)$ describe directions of final decay products: $\mu^+\mu^-K^+K^-$

2010/09/01

Transversity Basis

- Use "tansversity basis" in which the vector boson polarizations w.r.t. direction of motion are either
 - Transverse (⊥ perpendicular to each other)
 - Transverse (|| parallel to each other)

- \rightarrow CP odd
- \rightarrow CP even \rightarrow CP even

- Longitudinal (0)
- Corresponding amplitudes: A_{\perp} , A_{\parallel} , and A_{0}
 - (A. S. Dighe *et al.*, Phys. Lett. B369, 144 (1996))

Decay Rate $\frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$ + $|A_{\perp}|^{2} \mathcal{T}_{-} f_{3}(\vec{\rho}) + |A_{\parallel}| |A_{\perp}| \mathcal{U}_{+} f_{4}(\vec{\rho})$ + $|A_0||A_{\parallel}|\cos(\delta_{\parallel})\mathcal{T}_+f_5(\vec{\rho})$ $+ |A_0||A_1|\mathcal{V}_+ f_6(\vec{\rho}),$ $T_{+} = e^{-\Gamma t} \times [\cosh(\Delta \Gamma t/2) \neq \cos(2\beta_s) \sinh(\Delta \Gamma t/2)]$ $\mp q \sin(2\beta_s) \sin(\Delta m_s t)$ $\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) \right]$ $-\cos(\delta_{\perp}-\delta_{\parallel})\cos(2\beta_s)\sin(\Delta m_s t)$ $\pm \cos(\delta_{\perp} - \delta_{\parallel})\sin(2\beta_{\bullet})\sinh(\Delta\Gamma t/2)$ $\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\Delta m_s t) \right]$ $-\cos(\delta_{\perp})\cos(2\beta_s)\sin(\Delta m_s t)$ $\pm \cos(\delta_{\perp}) \sin(2\beta_{s}) \sinh(\Delta\Gamma t/2)$]. 2010/09/01

 $B_s \rightarrow J/\psi \phi$ decay rate as a function of time, decay angles, and initial B_s flavor

Time dependence terms

Angular dependence terms

Terms with β_s dependence

terms with Δm_s dependence present if initial state of *B* meson (*B* vs anti-*B*) is determined (flavor tagged)

Strong phases: $\begin{aligned} \delta_{\parallel} &\equiv \operatorname{Arg}(A_{\parallel}(0)A_{0}^{*}(0)) \\ \delta_{\perp} &\equiv \operatorname{Arg}(A_{\perp}(0)A_{0}^{*}(0)) \end{aligned}$

Identification of *B* flavor at production (flavor tagging) \rightarrow better sensitivity to β_s

Previous Result

Signal Reconstruction

- Reconstruct $B_s^0 \rightarrow J/y f$ in 5.2 fb⁻¹ of data from sample selected by di-muon trigger
 - Combine kinematic variables with particle ID information (dE/dx, TOF) in neural network to discriminate signal from background
 - Yield of ~6500 signal B_s events with $S/B \sim 1$ (compared to ~3150 in 2.8 fb⁻¹) CDF Run II preliminary $L = 5.2 \text{ fb}^{-1}$

2010/09/01

Flavor Tagging

- At Tevatron, b quarks mainly produced in pairs of bottom anti-bottom
 - \rightarrow flavor of the *B* meson at production inferred with:

jet charge

lepton

- Opposite Side Tagger (OST)
 - Exploits decay products of other *b*-hadron in the event
- Same Side Kaon Tagger (SSKT)
 - Exploits correlations with particles produced in fragmentation
- Output of flavor tagger
 - Flavor decision
 (*b*-quark or anti-*b*-quark)
 - Probability that the decision is correct: P = (1 + Dilution) / 2

Same side

 J/Ψ

Opposite Side Tagging Calibration and Performance

- OST combines opposite side lepton and jet charge information in a NN
- Initially calibrated using a sample of inclusive semileptonic *B* decays
 - Predicts tagging probability on event-by-event basis
- Re-calibrated using ~52000 $B^{\pm} \rightarrow J/\psi K^{\pm}$ decays
 - OST efficiency = 94.2 ± 0.4%, OST dilution = 11.5 ± 0.2% (correct tag probability ~56%)
 - Total tagging power = 1.2%

2010/09/01

cpv from b factories to tevatron and Ihcb

CDF II Preliminary, L = 5.2 fb⁻¹

Same Side Tagging Calibration

$$P_{Sig}(ct|\sigma_{ct},\xi=\xi_D\cdot\xi_P,D) = \frac{1}{N}\cdot\left[\frac{1}{\tau}e^{-\tilde{t}/\tau}\cdot(1+\xi\mathcal{A}D\cdot\cos(\Delta m_s\tilde{t}))\right]\otimes\mathcal{G}(c\tilde{t}|\sigma_{ct})\cdot\epsilon(ct|\sigma_{ct})$$

- Event-by-event predicted dilution based on simulation
- Calibrated with 5.2 fb⁻¹ of data
- Simultaneously measuring the B_s mixing frequency Δm_s and the dilution scale factor A
 - D: event-by-event predicted dilution
 - ξ : tagging decision = +1, -1, 0 for $B_{s'}$, $B_{s'}$ and un-tagged events
- Fully reconstructed B_s decays selected by displaced track trigger

Decay Channel	old S
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi \pi^-$	5613 ± 75
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^* K^-$	2761 ± 53
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^-$	2652 ± 52
$B_s^0 \to D_s^- (3\pi)^+, \ D_s^- \to \phi \pi^-$	1852 ± 43
Sum	12877 ± 113

2010/09/01

Same Side Tagging Performance

 B_s oscillation frequency measured $\Delta m_s = (17.79 \pm 0.07) \text{ ps}^{-1}$ (statistical error only) In good agreement with the published CDF measurement with 1 fb⁻¹ (Phys. Rev. Lett. 97, 242003 (2006), Phys. Rev. Lett. 97, 062003 (2006)) CDF Run 2 Pre iminary, L = 5.2 fb 2.0Amplitude Amplitude A $\Delta m_s = 17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ ps}^{-1}$ Sensitivity: 37.0 ps⁻¹ 1.5 used as external constraint 1.0 in β_s measurement Dilution scale factor (amplitude) 0.5 in good agreement with 1: 0.0 $\mathcal{A} = 0.94 \pm 0.15 \ (stat.) \pm 0.13 \ (syst.)$ -0.5 Largest systematic uncertainty from decay time resolution modeling -1.0 Total SSKT tagging power: -1.5 10 20 30 $\varepsilon \mathcal{A}^2 D^2 = (3.2 \pm 1.4) \%$ Mixing Frequency in ps⁻¹ 2010/09/01 cpv from b factories to tevatron and lhcb

Detector Angular Efficiency

- CP-even and CP-odd final states have different angular distributions \rightarrow use angles $\rho = (\theta, \phi, \psi)$ to statistically separate CP-even and CPodd components
- Detector acceptance distorts the angular distributions

 \rightarrow determine 3D angular efficiency function from simulation and account for this effect in the fit

CDF Simulation of Detector Angular Sculpting

Polarization Amplitudes

 $|A_{\parallel}(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)}$ Most precise $|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)}$ measurement of polarization amplitudes $= 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}.$ CDF Run II Preliminary, L = 5.2 fb 700 8 700 Data 0.12 0.42 600 600 Ъ 500 Signal fit .ຍິ400 ະ ພິ300 ш 300 projections 200 200 200 100 100 100 95 0.0 0.5 -0.5 0.0 $\cos(w)$ $\cos(\theta)$ CDF Run II Preliminary, L = 5.2 fb 8 මී නාග 800 Data Data Data 0.12 왁 700 700 ö 600 Ъe 600 Background 500 500 ĒŢ 400 400 fit projections 300 300 300 200 200 100 100 100 350 36 -0.50.0 0.5 -0.5 00 0.5 $\cos(\psi)$ cos/ 0 2010/09/01 cpv from b factories to tevatron and lhcb

S-wave Contamination

- Potential contamination of $B_s \rightarrow J/\psi \phi$ signal by:
 - $B_s \rightarrow J/\psi KK (KK \text{ non-resonant}) \text{ and } B_s \rightarrow J/\psi f^0 \text{ where } KK \text{ and } f^0 \text{ are } S\text{-wave states}$
- Predicted up to 15% contamination of total sample (~6% of signal) could bias towards SM value of β_s

2010/09/01

- Invariant KK mass (above) K⁺K⁻ Mass (GeV/c²)
 - Combinatorial background from B_s sidebands
 - B⁰ reflections modelled from MC
 - Fractions fixed from B_s mass fit (left)

Inclusion of S-wave KK Component

- S-wave KK component has been added to full-angular, timedependent likelihood fit.
- Both *f*⁰ and non-resonant *KK* are considered flat in mass within the small selection window, φ meson mass is modeled by asymmetric, relativistic Breit-Wigner.
- J/ψ KK (f0) is pure CP odd state
- KK mass is not a fit parameter

The fitted fraction of *KK S*-wave contamination in the signal is: < 6.7% at the 95% CL

 Without the S-wave, the likelihood function is symmetric under the transformation

 $\begin{array}{ccc} 2\beta_s \to \pi - 2\beta_s & \Delta\Gamma \to -\Delta\Gamma \\ \delta_{\parallel} \to 2\pi - \delta_{\parallel} & |\delta_{\perp} \to \pi - \delta_{\perp}| \end{array}$

- Study expected effect of tagging using pseudo-experiments
 - Improvement of parameter resolution is small due to limited tagging power
 - $\varepsilon D^2 \sim 4.5\%$ compared to *B*-factories ~30%
 - However, $\beta_s \rightarrow -\beta_s$ no longer a symmetry \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity
 - Adding the *S*-wave "slightly" breaks the symmetry due to asymmetric *φ* mass shape
 - Symmetry still valid with good approximation...

Other New Results

- $\bullet B_s^0 \to J/\psi K_s^0$
 - CP eigenstate, lifetime measures $\tau(B_s^{\text{heavy}})$
 - Can be used to extract CKM angle γ (R. Fleischer, Eur. Phys. J. C10, 299 (1999))
- $B_s^0 \rightarrow J/\psi K^{*0}$
 - Admixture of CP final states. Estimate penguin contribution to $J/\psi \phi$
 - A large sample can be used to measure $sin(2\beta_s)$ as a complementary mode to $B_s^0 \rightarrow J/\psi \phi$
- Procedure
 - Reconstruct the signal modes in B⁰ and B⁰ samples from 6 fb⁻¹ of CDF di-muon triggered data
 - Apply binned likelihood fits to mass distributions to extract signal yield fractions between B⁰_s and B⁰ modes
 - Finally, measure $f_s BR(B_s^0 \rightarrow J/\psi K^{(*)0}_{(s)}) / f_d BR(B^0 \rightarrow J/\psi K^{(*)0}_{(s)})$

Summary

- Tevatron is operating well. Better than ever!
 - CDF is ready to run for FY2011. $\int Ldt \sim 12 \text{ fb}^{-1}$ is expected.
 - Possibly Run III (2012~2014). ~ 16 fb⁻¹?
- Successful application of multivariate analysis techniques, even for *B* physics.
- No signs of physics beyond SM? But search continues actively.
 - β_s analysis is now consistent with SM within ~1 σ .
- Stay tuned for interesting results from CDF in the near future!
 - Search for new physics in Bs mixing at CDF has potential to observe/exclude wide range of non-SM mixing phase values

Backup Slides

2010/09/01

Systematic Uncertainties

Systematic	$\Delta\Gamma$	$c\tau_s$	$ A_{\ }(0) ^2$	$ A_0(0) ^2$	ϕ_{\perp}
Signal efficiency:					
Parameterisation	0.0024	0.96	0.0076	0.008	0.016
MC reweighting	0.0008	0.94	0.0129	0.0129	0.022
Signal mass model	0.0013	0.26	0.0009	0.0011	0.009
Background mass model	0.0009	1.4	0.0004	0.0005	0.004
Resolution model	0.0004	0.69	0.0002	0.0003	0.022
Background lifetime model	0.0036	2.0	0.0007	0.0011	0.058
Background angular distribution:					
Parameterisation	0.0002	0.02	0.0001	0.0001	0.001
$\sigma(c\tau)$ correlation	0.0002	0.14	0.0007	0.0007	0.006
Non-factorisation	0.0001	0.06	0.0004	0.0004	0.003
$B^0 \to J \psi K^*$ crossfeed	0.0014	0.24	0.0007	0.0010	0.006
SVX alignment	0.0006	2.0	0.0001	0.0002	0.002
Mass error	0.0001	0.58	0.0004	0.0004	0.002
c au error	0.0012	0.17	0.0005	0.0007	0.013
Pull bias	0.0028		0.0013	0.0021	
Totals	0.01	3.6	0.015	0.015	0.07

Dilution Scale Factor Systematic Uncertainties

Non-Gaussian Regime

- Pseudo-experiments show that we are still not in perfect Gaussian regime → quote confidence regions instead of point estimates
 - In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L. regions, take a slice through profiled likelihood at 2.3 (6.0) units up from minimum
 - In this analysis integrated likelihood ratio distribution (black histogram) deviates from the ideal *x* 2 distribution (green continuous curve)
- Using pseudo-experiments establish a "map" between Confidence Level and 2∆log(L)
 - All nuisance parameters are randomly varied within ±5σ from their best fit values and maps of CL vs 2Δlog(L) re-derived
 - To establish final confidence regions use most conservative case

Comparison Between Different Data Periods

- Divide 5.2 fb⁻¹ sample in three sub-samples corresponding to three public releases:
 - 0 ~ 1.4 fb⁻¹ (initial result released at the end of 2007, Phys. Rev. Lett. **100**, 161802 (2008))
 - 1.4 ~ 2.8 fb⁻¹ (added for 2008 ICHEP update)
 - 2.8 ~ 5.2 fb⁻¹ (added for this update)
- Previous results reproduced with updated analysis
- Clearly, improved agreement with the SM expectation comes from the second half of data (2.8 ~ 5.2 fb⁻¹)

β_s Sensitivity

