Search for Cosmic Background Neutrino Decay

Shin-Hong Kim (University of Tsukuba) for Neutrino Decay collaboration

Neutrino Decay Collaboration

S.H. Kim, Y. Takeuchi, K. Nagata, K. Kasahara, T. Okudaira (University of Tsukuba), H. Ikeda, S. Matsuura, T. Wada (JAXA/ISAS), H. Ishino, A. Kibayashi (Okayama University), S. Mima (RIKEN), T. Yoshida(University of Fukui), Y. Kato (Kinki University), M. Hazumi, Y. Arai (KEK), E. Ramberg, J.H. Yoo (Fermilab), S. B.Kim (Seoul National University)

Introduction

Motivation

Cosmic Infrared Background Measurement by COBE and AKARI

- Proposal on Search for Cosmic Background Neutrino Decay Preparatory Rocket experiment
- **R&D of Superconducting Tunnel Junction (STJ) Detector**

Motivation of Search for Cosmic Background Neutrino Decay

Only neutrino mass is unknown in elementary particles. Detection of neutrino decay enables us to measure an independent quantity of Δm² measured by neutrino oscillation experiments.
Thus we can obtain neutrino mass itself from these two independent measurements.

 $E_{\gamma} = \frac{m_3^2 - m_2^2}{2m_3} = \frac{\Delta m_{23}^2}{2m_3}$ Using $\Delta m_{23}^2 = (2.43 \pm 0.09) \times 10^{-3} \text{ eV}^2$ $E_{\gamma} = 10 \sim 25 \text{ meV}$ at ν_3 rest frame. (Far - Infrared region $\lambda = 50 \sim 125 \mu$)

• As the neutrino lifetime is very long, we need use cosmic background neutrino to observe the neutrino decay. To observe this decay of the cosmic background neutrino means a discovery of the cosmic background neutrino predicted by cosmology.

Neutrino Lifetime

In the Left - Right SymmetricModel $SU(2)_L \otimes SU(2)_R \otimes U(1)$ (PRL 38,1252(1977), PRD 17,1395(1978) NP B206,359(1982)), there are two Weak Boson mass eigenstates :

 $W_1 = W_L \cos \zeta - W_R \sin \zeta,$ $W_2 = W_L \sin \zeta + W_R \cos \zeta.$

 W_L and W_R are fields with pure V-A and V+A couplings, respectively, and ζ is a mixing angle.

Using a lower mass limit $M(W_R) > 715 \text{GeV/c}^2$, a mixing angle limit $\zeta < 0.013$, and $m_3 = 50 \text{meV}$, $\tau(v_1 \rightarrow v_1 + \gamma) = 1.5 \times 10^{17} \text{ year}$ (2.1×10⁴³ year in Standard Model)

Measured neutrino lifetime limit $\tau < 3 \ge 10^{12}$ year from CIB results measured by COBE and AKARI

Big-Bang Cosmology and Cosmic Background Neutrino (CvB)

Cosmic Infrared Background measured by COBE and AKARI

COBE: M. G. Hauser *et al.* ApJ 508 (1998) 25. D. P. Finkbeiner *et al.* ApJ 544 (2000) 81. AKARI: S. Matsuura *et al.* ApJ. 737 (2011) 2.

A. Mirizzi, D. Montanino and P. Serpico PRD76, 053007 (2007) Neutrino lifetime $\tau < (1.6^{-3}.1)x10^{12}$ year from CIB results by COBE S.H. Kim, K. Takemasa, Y. Takeuchi and S. Matsuura JPSJ 81, 024101 (2012) Neutrino lifetime $\tau < (3.1^{-3}.8)x10^{12}$ year from CIB results by AKARI and SPITZER

Neutrino Decay Detection Sensitivity

5σ observation sensitivity by 10-hour measurement with a telescope with 20 cm diameter, a viewing angle of 0.1 degree

JAXA Rocket Experiment for Neutrino Decay Search

Plan: 5minutes data acquisition at 200 km height in 2016. Improve lifetime limit by two orders of magnitude ($\sim 10^{14}$ year).

R&D of Superconducting Tunnel Junction (STJ) Detctor Nb/Al-STJ

Goal: detection of a single far-infrared photon in energy range between 15meV and 30meV for the rocket experiment for neutrino decay search.

Signal of Nb/Al-STJ (100 x $100 \mu m^2$) to infrared (1.31 μm) light at 1.9K.

Time spread at FWHM is 1 μ sec. The number of photon : 93±11 (from the spread of the signal charge distribution).

the response of Nb/Al-STJ ($4 \mu m^2$) to the visible light (456nm) at 1.9K. a single photon peak is separated from pedestal by 1σ .

The signal charge distribution (Red histogram) is fitted by four Gaussians of 0, 1, 2 and 3 photon peaks. Single photon peak has a mean of 0.4fC and σ of 0.4fC.

R&D of Superconducting Tunnel Junction (STJ) Detctor

SOI-STJ SOI (Silicon-On-Insulator) preamplifier : Low noise preamplifier working around 1K.

We have processed Nb/Al-STJ on a SOI transistor board, and confirmed that both Nb/Al-STJ detector and SOI MOSFET worked normally **at 700mK**.

In the next step, we will look at the response of SOI-STJ to infrared photons.

R&D of Superconducting Tunnel Junction (STJ) Detctor

Hf-STJ

Goal: Measure energy of a single far-infrared photon for neutrino decay search experiment within 2% energy resolution.

Micro-calorimeter: Hf-STJ can generate enough statistics of quasi-particles from cooper pair breakings to achieve 2% energy resolution for photon with $E_{\gamma} = 25$ meV.

Material	$T_c(K)$	$\Delta(\text{meV})$
Niobium	9.20	1.550
Aluminum	1.14	0.172
Hafnium	0.13	0.021

Hf-STJ ($100x100\mu m^2$) shows smaller leakage current than Hf-STJ ($200x200\mu m^2$) which we have established to work as a STJ in 2011.

The work to reduce a large leakage current of Hf-STJ is underway.

Summary

- 1. It is feasible to observe the cosmic background neutrino decay with a satellite experiment, if we assume Left-Right Symmetric Model.
- 2. We are developing STJ-based detectors to detect a far-infrared photon in energy range between 8 and 30meV to search for cosmic background neutrino decay.
- 3. A rocket experiment using the STJ detectors for neutrino decay search is in preparation. It will improve the neutrino lifetime sensitivity from the present 10^{12} year to 10^{14} year.

Schedule

	2013	2014	2015	2016		2017	2018	
Experiment Design	Experiment design with Satellite such as SPICA							
	Experiment design with FIR Rocket				ent			
SuperconductingTun nel Junction (STJ) Detector	Design and R&D of Nb/Al-STJ Detector		Production		cperim			
	Design and R&D of Hf-STJ Detector				Ê			
Preamplifier at 2K and Post-Preamp (Fermilab, JAXA, Tsukuba)	Design and R&D		Productio	n	Rocke			
					tory			
Dispersive Element, Optics (JAXA, Tsukuba)	Design and R&D Proc		Productio	n	servat			
					ao be			
Cryostat (JAXA, KEK)	Design and R&D		Productio	n	r-Infrar			
Measurements + Analysis (All)	Analysis Program			Fai				
	Simulation					Analysis		

STJ (Superconducting Tunnel Junction) Detector

Superconductor / Insulator / Superconductor Josephson Junction At the superconducting junction,

Neutrino Decay Lifetime

M. Beg, W. Marciano and M. Rudeman Phys. Rev. D17 (1978) 1395-1401 R. E. Shrock Nucl. Phys. B206 (1982) 359-379

Calculate the neutrino decay width in $SU(2)_L \times SU(2)_R \times U(1)$ model with Dirac neutrinos. $M(W_R) = \infty$ and $\sin \zeta = 0$ corresponds to Standard Model.

 $W_1 = W_L \cos \zeta - W_R \sin \zeta$ $W_2 = W_L \sin \zeta + W_R \cos \zeta$

 W_L and W_R are fields with pure V-A and V+A couplings, respectively, and ζ is a mixing angle.

Using a lower mass limit $M(W_R) > 715 \text{GeV/c}^2$, a mixing angle limit $\zeta < 0.013$, and $m_3 = 50 \text{meV}$,

 $\tau(v_3 \rightarrow v_2 + \gamma) = 1.5 \times 10^{17} \text{ year}$ (2.1×10⁴³ year in Standard Model)

Lifetime Calculation

R. E. Schrock, Nucl. Phys. 28 (1982) 359. Calculate the neutrino decay width in SU(2)_L × SU(2)_R × U(1) model $\tau^{-1} = \frac{\alpha G_F^2}{128\pi^4} (\frac{m_3^2 - m_2^2}{m_3})^3 \times |U_{32}|^2 |U_{33}|^2 [\frac{9}{64} (m_3^2 + m_2^2) \frac{m_\tau^4}{M_{W1}^4} (1 + \frac{M_{W1}^2}{M_{W2}^2})^2 + 4m_\tau^2 (1 - \frac{M_{W1}^2}{M_{W2}^2})^2 \sin^2 2\zeta$

where α is a fine structure constant, G_F is a Fermi coupling constant, m_{τ} , M_{W1} and M_{W2} are masses of τ , W_1 and W_2 , respectively.^{21,22)} U_{ij} is the (i, j)-th element of the Maki-Nakagawa-Sakata mixing matrix²³⁾ and we took $|U_{32}| = 1/\sqrt{2}$ and $|U_{33}| = 1/\sqrt{2}$. $\tau^{-1} \approx \frac{\alpha G_F^2}{64\pi^4} \left(\frac{\Delta m_{32}^2}{m_3}\right)^3 m_r^2 \sin^2 2\zeta$ $M_{W2} = 0.715 \text{TeV}, \sin\zeta = 0.013, \Delta m_{32}^2 = 2.43 \times 10^{-3} \text{eV}^2, m_r = 1.78 \text{GeV}, m_3 = 50 \text{meV}, \tau = 1.5 \times 10^{17} \text{ year}$

In the standard model,

$$\tau^{-1} \approx \frac{9\alpha G_F^2}{8192\pi^4} \left(\frac{\Delta m_{32}^2}{m_3}\right)^3 (m_3^2 + m_2^2) \left(\frac{m_\tau^2}{M_W^2}\right)^2 \qquad \text{Thus } \tau = 2.1 \times 10^{43} \,\text{year}$$

ref. K. Sato and M. Kobay ashi, Prog. Theor. Phys.58 (1977) 1775. and others.

JAXA Rocket Experiment for Neutrino Decay Search

Incident rays are made parallel through cylindrical mirrors 1, 2 and a parabolic mirror before diffracted by a grating, and are finally focused on the STJ detector array by a spherical mirror.

Rate/50pixel-spectrometer = 15 kHz (300Hz/pixel) Measurements for 200 s \rightarrow 3M events /50pixel-spectrometer. Using 8 x 50pixel-spectrometer, $\sigma/N=0.02\%$ $2\sigma = 0.04\% \times 0.5 \mu W/m^2/sr = 0.2nW/m^2/sr$ (0.4% times present limit 50nW/m²/sr)