Top Quark Physics at the Tevatron

Shinhong Kim University of Tsukuba International Workshop on Linear Colliders LCWS99, April 30, 1999

- Tevatron and CDF Detector in Run2
- Top Quark Physics, present
- Top Quark Physics, future

Tevatron and CDF Detector in RUN2

RUN2(will start in April 2000)

- Accelerator Upgrade
 - CM Energy: 1.8TeV $\rightarrow 2.0$ TeV
 - Integrated Luminosity: 0.1 fb⁻¹ \rightarrow 2 fb⁻¹
 - Instantaneous Luminosity: $2.5 \times 10^{31} \rightarrow 5 \times 10^{31} \sim 2 \times 10^{32}$
 - Number of Bunches: 6 \rightarrow 36 \sim 108
 - Bunch Period: $3.5\mu s \rightarrow 396 \sim 132 ns$
- Detector Upgrade (CDF II detector, Technical Design Report Nov. 1996)
 - Quick response to the shorter bunch period
 - $* \ \mathrm{CTC} \to \ \mathrm{COT}$
 - * Gas Calorimeter \rightarrow Scintillator Calorimeter
 - Large coverage of SVX II (twice larger than SVX')

Collider Detector at Fermilab (CDF)

History of the Top Quark Search

- 1977-1994: A fine collection of null results
- April, 1994: First Evidence
 - Phys. Rev. D50, 2966 (1994) CDF
 - -15 events on a background of 6.0
 - -2.8σ excess
 - $-M_{top} = 174 \pm 17 \text{ GeV}/c^2$
 - $-\sigma_{t\bar{t}} = 13.9^{+6.1}_{-4.8} \text{ pb}$
- February, 1995: Confirmation
 - -PRL 74, 2626 (1995) CDF
 - -4.8σ excess
 - $-M_{top} = 176 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{ GeV}/c^2$
 - $-\sigma_{t\bar{t}} = 6.8^{+3.6}_{-2.4} \text{ pb}$
 - PRL 74, 2632 (1995) D0
 - -4.6σ excess

$$-M_{top} = 199^{+19}_{-21} \text{ (stat)} + 14_{-21} \text{ (syst)} \text{ GeV}/c^2$$

 $-\sigma_{t\bar{t}} = 6.4 \pm 2.2 \text{ pb}$

Top Production at the Tevatron

Top quarks are predominantly produced in pairs by the process $p\bar{p} \rightarrow t\bar{t}$.

In Tevatron Run I,

- Integrated Luminosity exceeded 100 pb^{-1}
- over $5 \times 10^{12} \ p\bar{p}$ collisions
- \approx 500 $t\bar{t}$ pairs produced.

$$rac{\sigma_{
m tar t}}{\sigma_{
m inel}}\sim 10^{-9}, \qquad rac{\sigma_{
m tar t}}{\sigma_{
m W}}\sim 10^{-3}$$

We categorize top decays by how the two W bosons decay.

• Both W's Decay $W \to l\nu$ (Dilepton Channel)

Final State: $l^+\nu l^-\nu b\bar{b}$ (*l:e* or μ ; 5%)

• One W Decay $W \to l\nu$ (Lepton+Jets Channel)

Final State: $l^+ \nu q \bar{q}' b \bar{b}$ (*l:e* or μ ; 30%)

• Both W's Decay $W \to q\bar{q}'$ (All Hadronic Channel) Final State: $q\bar{q}'q\bar{q}'b\bar{b}$ (44%)

Signature:

- One isolated high P_T lepton (e or μ)
- Missing Energy $(\not\!\!E_T)$
- 4 or more jets, 2 of which are from b-quarks

Dominant Backgrounds:

- $p\bar{p} \rightarrow W + jets$
- QCD background (Fake leptons)

Two Distinct Differences between $t\bar{t}$ and W+jets

- $t\bar{t}$ events always contain b quarks, W+jet events usually do not.
- The jets in W+jet events tend to be softer than in $t\bar{t}$ (low E_t)

Need to further suppress backgrounds either with:

- Topological/kinematic requirements:
 - Aplanarity
 - $-H_T = E_T(\text{leptons}) + \not\!\!\!E_T + \Sigma E_t(\text{jets})$
 - Form likelihood ($t\bar{t}$ vs. Bkgd) based on Jet E_t 's
- Tag *b*-quarks using semileptonic decays (SLT *b*-tag)

$$b \to eX$$
, $b \to \mu X$ (20%)

• Tag *b*-quarks using Displaced vertex (SVX *b*-tag)

CDF W+Jet Events

The final numbers are in

We have (CDF and D0 Combined):

 ≈ 13 Dileptons ≈ 60 Lepton+Jets ≈ 60 All Hadronic

What do we do next ?

- Production Properties $(\sigma_{t\bar{t}})$
- Decay Properties (V_{tb})
- Top Quark Mass
- Search for new physics (Rare decays, $M_{t\bar{t}}$)

 $\sigma_{t\bar{t}}$ Measurements

$$\sigma = rac{N_{obs} - N_{bkg}}{A \mathcal{L}}$$

Goal: Determine the top cross section

- as accurately as possible
- in as many different decay channels as possible as a check of top decay and compare it to theoretical prediction.

Top Quark Mass in Lepton + Jet Channel at CDF

76 Events

 $M_{top} = 175.9 \pm 4.8 (\text{stat}) \pm 5.3 (\text{syst}) \text{ GeV}/c^2$

Combining this with the measurments in the dilepton and all-hadronic channels,

$$M_{top} = 176.0 \pm \ 6.5 \ {
m GeV}/c^2 \ ({
m CDF})$$

M_W vs M_T

Higgs Mass Constraint

From $M_{top}(CDF,D0)$, $M_W(CDF,D0,LEPII)$ and other electroweak results at LEP and SLC

- $M_H = 76^{+85}_{-47} \text{ GeV}/c^2$
- $M_H < 262 \text{ GeV}/c^2$ at 95% C. L.

[ref] LEP Electroweak Working Group, CERN EP/99-15.

Search for single top quark production

s-channel W^* process $\sigma_{\text{theory}} = 0.73 \text{ pb}$ Signal is W+b+b

W-gluon fusion process $\sigma_{\text{theory}} = 1.70 \text{ pb}$ Signal is W+b+q

- Event selection
 - Isolated lepton $E_T \ge 20 \text{ GeV}$
 - Missing $E_T \ge 20 \text{ GeV}$
 - Exactly two jets with uncorrected $E_T \ge 15$ GeV and $|\eta| \le 2$.
 - Standard Z and top dilepton removal

 W^* signal search:

at least one b-tagged jet

W-gluon fusion signal search:

only one b-tagged jet + top mass window cut

W-gluon fusion single top search

Candidate	: 15 events
Expected background	$(\mathrm{W}bar{b},tar{t})$
	: 12.9 \pm 2.1 events
Expected signal	: 1.2 ± 0.3 events

Perform a likelihood fit of $Q \times \eta$ distribution:

Fitted background : 13.1 ± 1.9 events Fitted signal : $1.4 \stackrel{+4.2}{_{-3.4}}$ events

Q: lepton charge (± 1) η : untagged jet pseudo-rapidity

W^* single top search

Candidate	:	42 events
Expected background	•	31.3 ± 4.7
Expected signal	•	1.0 ± 0.3

Perform a likelihood fit of reconstructed top mass distribution:

Top Quark Physics in RUN2

- Accelerator Upgrade
 - CM Energy:
 - * 1.8 TeV \rightarrow 2.0 TeV ($\sigma_{t\bar{t}}$: × 1.4)
 - Integrated Luminosity: * 0.1 fb⁻¹ \rightarrow 2 fb⁻¹ (\times 20)
- Detector Upgrade (CDF)
 - Acceptance for $t\bar{t} \to W(\to \ell\nu) + \ge 3$ jets: * 8.7% $\to 10\%$ (× 1.15)
 - *b*-tagging efficiency for $t\bar{t} \rightarrow W(\rightarrow \ell\nu) + \ge 3$ jets: * 52% \rightarrow 86% (× 1.65)

From the above, we have 50 times higher rate of $t\bar{t} \to W(\to \ell\nu) + \geq 3$ jet events with one *b*-tagged jet in RUN2 (2fb⁻¹).

Number of $t\bar{t}$ events in RUN2(CDF)

- $W(\to \ell \nu) + \ge 4$ jets (1 *b*-tag): ~ 1,000
- $W(\rightarrow \ell \nu) + \ge 4$ jets (2 *b*-tags): ~ 500

$CDF RUN2 (2fb^{-1})$

- Top Quark Mass: $\Delta M_{top} \sim 3 \text{GeV}/c^2$
- $\sigma_{t\bar{t}}$: $\Delta\sigma/\sigma \sim 9\%$
- Γ_{top} from $q\bar{q} \to W^* \to t\bar{b}$ and $gW^* \to t\bar{b}$: $\Delta\Gamma/\Gamma \sim 25\%$
- V_{tb} : $\Delta |V_{tb}| / |V_{tb}| \sim 13\%$
- New Particle Search such as $t \to H^+ b$ or $X \to t\bar{t}$.

From M_{top} (Tevatron RUN2), M_W (Tevatron RUN2, LEPII) and other electroweak results at LEP and SLC,

 $\Delta M_H/M_H \sim 30\%$

[Ref] TEV2000 Rroup Report FERMILAB-PUB-96/082 and Light Higgs Working Group Report at SNOWMASS 96.