Development of Superconducting Tunnel Junction Photon Detector using Hafnium

Shin-Hong Kim,

Hyun-Sang Jeong, Kenji Kiuchi, Shinya Kanai, Takashi Onjo, Ken-ichi Takemasa, Yuji Takeuchi (University of Tsukuba), Hirokazu Ikeda, Shuji Matsuura (JAXA/ISAS), Hiromi Sato (RIKEN) Masashi Hazumi (KEK), Soo-Bong Kim (Seoul National University)

June 11, 2011 at TIPP2011

Motivation

Superconducting Tunnel Junction (STJ) Detector

Status of Hf-STJ Development

Search for radiative decay of cosmic background neutrino

• Δm_{ij}^2 have been measured accurately by neutrino oscillation experiments. but neutrino mass itself has not been measured. Can we measure it ?

Detection of neutrino decay enables us to measure an independent quantity of the difference between squares of neutrino mass. Thus we can obtain neutrino mass itself from these two independent measurements.

• As the neutrino lifetime is very long, we need use cosmic background neutrino to observe the neutrino decay. To observe this decay of the cosmic background neutrino means a discovery of the cosmic background neutrino predicted by cosmology.

Neutrino Mass Relations and Expected Photon Energy Spectrum

 H_0 : Hubble constant, Ω_M : Matter density(0.76), Ω_Λ : cosmological constant(0.24)

Neutrino Decay Lifetime

M. Beg, W. Marciano and M. Rudeman Phys. Rev. D17 (1978) 1395-1401 R. E. Shrock Nucl. Phys. B206 (1982) 359-379

Calculate the neutrino decay width in $SU(2)_L \times SU(2)_R \times U(1)$ model $M(W_R) = \infty$ and sin $\zeta = 0$ corresponds to Standard Model.

 $W_1 = W_L \cos \zeta - W_R \sin \zeta$ $W_2 = W_L \sin \zeta + W_R \cos \zeta$

 W_L and W_R are fields with pure V-A and V+A couplings, respectively, and ζ is a mixing angle.

Using a lower mass limit $M(W_R) > 715 \text{GeV/c}^2$, a mixing angle limit $\zeta < 0.013$, and $m_3 = 50 \text{meV}$,

 $\tau(v_{3} \rightarrow v_{2} + \gamma) = 1.5 \times 10^{17} \text{ year} \quad (2.1 \times 10^{43} \text{ year in Standard Model})$

the CIB and the Decay Photon Energy Spectrum with Various Energy Resolution

The energy resolution is required to be better than 2% at 25meV.
 NEP (Noise Equivalent Power) is required to be less than 3 x 10⁻¹⁹ WHz^{-1/2}.
 Expected 5 σ observation lifetime is 1.5 x 10¹⁷ year with a telescope of 20cm diameter, 0.1 degree viewing angle and 3 hour running for m₃ of 50meV.

CIB Observation Plan (by JAXA Dr. Matsuura)

6

Superconducting Tunnel Junction (STJ) Detector

STJ (Superconducting Tunnel Junction) Detector

Superconductor / Insulator / Superconductor Josephson Junction At the superconducting junction,

 $_2\Delta$

STJ Energy Resolution

Basic Properties of STJ Detector Nb-STJ current -voltage (I-V) curve

- Leakage current (Dynamic resistance R_d in $|V| < 2\Delta/e$)
- Energy gap ∠
- Critical current I_c

Josephson Current is suppressed by a magnetic field parallel to the insulator plane

Nb/Al - STJ Response to 5.9keV X rays

Up: 5.9keV X ray signal after preamplifier Down: 5.9keV X ray signal after preamp + shaper at T=0.4K Double peak comes from that X rays are absorbed both in the upper layer and the under layer.

Status of Hf-STJ Development

Hf-STJ Structure

R&D Status

- Search for the best condition for making a flat Hf layer : various pressures and voltages.
- 2.0 Pa, 70W (optimized)

R&D Status

- (2) Search for the best condition for making the insulator layer (1-2 nm thick) as a tunnel barrier: various pressures and periods of oxidation.
- 5 Torr, 12 minutes Oxidation sample (TEM picture)
 Confirmed 1.3nm-thick HfO₂ layer

R&D Status

(3) Operation of He_3/He_4 Dilution Refrigerator.

- We borrowed a He₃/He₄ Dilution Refrigerator from a group of Low Temperature Material Science at University of Tsukuba in 2008.
- Achieved 49mK on July 2009.

Plans

Superconducting Detector R&D	
•2011-2012: Develop a single cell Hf-STJ	
and low-temperature electronics	
(to see the Infrared photon signal).	
•2013- : Multi-cell Hf-STJ development	
•2011- : Hf-MKID (Microwave Kinetic Inductance Dete	ectors)
development	

CIB Data Analysis for Neutrino Decay Search

- •2011- : Analysis of AKARI CIB data
- •2015- : FIR-Rocket (2015 ?), SPICA(2018), EXZIT(2020?)

BACKUP

MINOS, K2K and Super-K Experiment Results

 $\theta_{12} = 34.4 + 1.3/ - 1.2$ degrees

Neutrino Masses and Decay Photon Energy

Mass Relations from Neutrino Oscillation Results and Neutrino Decay

Results from direct measurement (Tritium Decay) $m(v_e) < 2eV$

Decay Photon Energy versus m₃

Spectra of Decay Photon Energy after1.9K v Smearing

Energy distribution of cosmic background neutrino is a Planck distribution with a temperature of 1.9K (0.6meV).

Red Shift Effect on the Photon Energy Spectra

Observed photon energy E_{γ} is given by $E_{\gamma} = E_{\gamma rest}/(1+z)$, where z is a red shift and $E_{\gamma rest}$ is a photon energy without Doppler shift.

v_3 Decay Lifetime versus m_3

Lower Limit of Lifetime from the Energy Spectrum Fit to the CIB measured by COBE and AKARI

$$\chi^{2}=6.6$$

 $\tau = (2.8 \pm 0.2) \times 10^{12} \text{ year}$
 $= (0.85 \pm 0.06) \times 10^{20} \text{ sec}$

Lifetime limit vs m₃

Using the CIB at 60, 100 (ApJ, 544, 81, 2000), 140, 240 μ m (ApJ, 508, 25, 1998), 65, 90, 140, and 160 μ m (arXiv:1002.3674, 2010), the photon energy spectrum from neutrino radiative decay gives a lifetime lower limit of 2.4 x 10¹² year at 95% C.L. for m₃ = 0.05eV and m₂ = 0.01eV. (My calculation)

Basic Properties of STJ Detector

- By measuring the curve of current -voltage (I-V curve), we know
- Superconducting phase transition
- Josephson junction

Nb/Al - STJ IV Curve

Nb/Al - STJ Response to 5.9keV X rays by RIKEN group

H.Sato et al., Jpn. J. Appl. Phys. 39 (2000) p5090

Surface Flatness measured with AFM

Hf/Al/AlOx/Hf-STJ I-V Curve

SPICA SENSITIVITY

By Yasuo Doi at SPICAWorkshop Dec 16-17, 2010 Expected sensitivity Spectroscopic (left) & photometric (right)

SPICA (launched in 2018) sensitivity: For photons with a wavelength of $30-200 \mu$, 1-hour measurement gives 5σ limit of 4×10^{-19} Wm⁻².

Assuming the signal spreads uniformly over FOV 0.1degree (6.0arcmin), 5σ limit is $3.2x10^{-12}$ Wm⁻²sr⁻¹. NEP= 2×10^{-19} WHz^{-1/2} is good enough.

Plans

Superconducting Detector R&D

 2011- start a collaboration with Fermilab Milli-Kelvin Facility group who will work on the readout electronics at low temperature around 1K.

Fermilab Milli-Kelvin Facility

Dan Bauer, Herman Cease, Juan Estrada, Erik Ramberg, Richard Schmitt, Jason Steffen and Jonghee Yoo Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

We propose to build a milli-Kelvin user facility at Fermilab. This facility would provide easy access to a sub-Kelvin cryogenic apparatus for the Fermilab Users. The facility will have immediate uses for SuperCDMS detector R&D, microwave kinetic inductance detector R&D (MKID), and crystal-phase low background detector R&D. Moreover, the facility would attract Users who wish to test devices such as ultra-sensitive superconducting sensors and low-noise quantum devices. An investment in a cryogen-free dilution refrigerator and related test equipment would be instrumental for future detectors and scientific experiments. In this proposal we request engineering/technical hours and support for the facility design and purchase of a cryogen-free dilution refrigerator which requires a year of lead time for delivery.