Search for the Standard Model Higgs boson decaying to a bottom-quark pair with the ATLAS detector

Kenji Kiuchi University of Tsukuba @TGSW 2014/Sep/29

LHC-ATLAS experiment

27km ring + 8.3T dipole 8TeV: highest energy $7.7 \times 10^{33} cm^2 s^{-1}$: highest luminosity p-p collider available data: 8TeV, 20.3/fb ~90% of delivered !2

ATLAS: General purpose detector@LHC

Higgs->bb analysis

gg Fusion WZ Fusion no trigge bb ďdpp Analyzed channels W/Z q vvbb, lvbb, llbb

H->bb has the largest branching ratio(~57%) Final state have only jets -> no trigger Focus on W/Z associate production -> trigger leptons from W/Z decay

How to suppress & control huge background

Next is H->bb

b-tagging

b-tagging: identify b-quark origin jet(b-jet) b-quark has long life time: $c\tau \sim 470 \mu m$ $L_{xy} \sim 5mm(p_T = 50 GeV)$ > vertex resolution

NEW: define 3 b-tagged categoriestight(50%)…high b-jet purity

- medium(70%)…conventional region
- loose(80%)…additional region

flavor fraction determination

How do we estimate W/Z+jets flavor(b, c, light) fraction ?

W+2jet MC mbb(2tag) and b-tag(1tag) distribution

mbb is most sensitive variable for higgs but have less information about the BKG flavor b-tag weight have a strong constraint

- Data 2012

1000

ATLAS

BDT(MVA) distribution

input variables

0-Lepton	1-Lepton	2-Lepton
	×	×
×	×	×
×	×	×
Х	×	×
×	×	×
×	×	×
×		×
×	×	×
		×
×		
	×	
	×	
		×
×	×	×
×	×	×
Only in 3-jet events		
×	×	×
×	×	×
	0-Lepton X X X X X X X X X X X X X X X X X X	$\begin{array}{c cccc} 0-\text{Lepton} & 1-\text{Lepton} \\ & \times \\ \times & \times \\ & & \times \\ & & & \times \\ & & & &$

2jet2(Medium+)Tight btag BDT inputs are optimized for each channel. Globally fit using b-tag dist. and BDT output.

Result

Exp. Limit: 0.8 (OLD 1.3, 60% better) Obs. Limit: 1.2 Exp. Significance: 2.6 σ Obs. Significance: 1.3 σ μ =0.51±0.39 Run2 data will give us an answer !! 8 <u>http://arxiv.org/abs/1409.6212</u>

Backup

Mbb distribution

2jet2Medium+Tight tag LowMET: a new region CUT base ONLY

Good Data/MC agreement

BDT training

Variable	0-Lepton	1-Lepton	2-Lepton
p_{T}^{V}		×	×
$E_{\rm T}^{\rm miss}$	×	×	×
$p_{\mathrm{T}}^{\mathrm{jet}_1}$	×	×	×
$p_{\rm T}^{\rm jet_2}$	×	×	×
<i>m</i> dijet	×	×	×
$\Delta R(\text{jet}_1, \text{jet}_2)$	×	×	×
$ \Delta \eta(\text{jet}_1, \text{jet}_2) $	×		×
$\Delta \phi(V, dijet)$	×	×	×
$ \Delta \eta(V, dijet) $			×
H_{T}	×		
$\min[\Delta\phi(\ell, \text{jet})]$		×	
m_{T}^{W}		×	
$m_{\ell\ell}$			×
$MV1c(jet_1)$	×	×	×
$MV1c(jet_2)$	×	×	×
	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet_3}}$	×	×	×
m _{jjj}	×	×	×

ABCD method

