Jet azimuthal distributions with high p_{T} neutral pion triggers in pp collisions $V \mathrm{~s}=7 \mathrm{TeV}$ from LHC－ALICE

University of Tsukuba

Daisuke Watanabe

Outline

－Physics motivation of π^{0}－jet correlations
－A large Ion Collider Experiment（ALICE）
－Analysis procedure
－Results
－Next step ：Pb－Pb analysis
－Summary

Physics motivation of π^{0}－jet correlation

（CERN－LHCC－2010－011，ALICE－TDR－014－ADD－1）

（Nucl．Phys．A839，255c）
－Can control path length by tagging a recoil jet with triggered π^{0} and changing p_{T} for π^{0}
－High p_{T} of π^{0}－＞longer path length of recoiling jets
－Direct measurement of path length dependence of＂jet＂quenching，not by hadron
－pp analysis is an important baseline for PbPb analysis

A Large Ion Collider Experiment（ALICE）

－Data set
－pp collisions at $\mathrm{V} s=7 \mathrm{TeV}$ with EMCal triggered events
－Number of events ： 10 M

Charged jet reconstruction（FASTJET）

$$
d_{i j}=\min \left(k_{t i}^{2 p}, k_{t j}^{2 p}\right) \frac{\Delta R^{2}}{R^{2}} \begin{cases}p=1 & \mathrm{k}_{\mathrm{T}} \text { algorithm } \\ p=0 & \text { Cambridge/Aachen algorithm } \\ p=-1 & \text { anti- } \mathrm{k}_{\mathrm{T}} \text { algorithm }\end{cases}
$$

Procedure of jet finding

1．Calculate particle distance ： d_{ij}
2．Calculate Beam distance ： $\mathrm{d}_{\mathrm{iB}}=\mathrm{k}_{\mathrm{ti}}^{2 p}$
3．Find smallest distance $\left(\mathrm{d}_{\mathrm{ij}}\right.$ or $\left.\mathrm{d}_{\mathrm{ib}}\right)$
4．If d_{ij} is smallest combine particles If d_{ib} is smallest and the cluster momentum larger than threshold call the cluster Jet

Parameters

－ R size $\left(=\sqrt{ } \Delta \phi^{2}+\Delta \eta^{2}\right) \quad: 0.4$
－p_{T} cut on a single particle ： $0.15 \mathrm{GeV} / \mathrm{c}$
－Jet energy threshold ： $10 \mathrm{GeV} / \mathrm{c}$
－Jet acceptance ：$|\eta|<0.5,0<\phi<2 \pi$
M．Cacciari et al，JHEP 0804 （2008） 063

Energy dependence of shower shape parameter

Shower shape

－The opening angle of the neutral mesons decay photon becomes smaller， when increasing the neutral meson energy due to Lorentz boost
－In the EMCAL，when the energy of π^{0} is lager than 5 GeV
－The two clusters of decay photon start to be close
－The electromagnetic showers start to overlap

The procedure of cluster splitting method

1．Select neutral cluster with $\lambda_{0}{ }^{2}>0.3$ ，track matching etc
2．Find local maxima in the cluster
3．Split the cluster in two new sub－clusters taking the two highest local maxima cells and aggregate all towers around them（form 3×3 cluster）
4．Get the two new sub－clusters，and calculate energy asymmetry and invariant mass

－Overlap cell energy is calculated by using weight of each local maxima cell energy

Invariant mass and $\pi^{0} \mathrm{p}_{\mathrm{T}}$ distribution

－ 3σ invariant mass window from peak mean is selected as π^{0}
－We can identify π^{0} up to $40 \mathrm{GeV} / \mathrm{c}$

Trigger p_{T} dependence of azimuthal correlations

Increaseing charged jet p_{T} threshold

－Two clear jet－like peaks are observed，indicating that high p_{T} π^{0} production is correlated with jet production
－The jet yields of near and away side increase with increasing trigger $\pi^{0} p_{T}$

Near and away－side widths as a function of $\pi^{0} p_{T}$

－Near and away－side widths decrease slightly with increasing trigger $\pi^{0} p_{T}$
－Almost no difference observed for different jet p_{T} thresholds studied

Next step ：Pb－Pb analysis

－Study the path length dependence by selecting different trigger $\pi^{0} p_{T}$ in the ratio of the per－trigger yield（ I_{AA} ）

Ψ ：event plane angle，ϕ_{s} ：angle between EP and trigger π^{0}
－Possible to extract more details on path length dependence by combing information on centrality and event plane orientation

Summary

－π^{0}－jet correlations have been measured in pp collisions at $\mathrm{Vs}=7 \mathrm{TeV}$ with cluster splitting method
－Azimuthal yields per trigger π^{0} increase with increasing trigger $\pi^{0} p_{T}$
－Both near and away side Gaussian widths are decreasing with increasing p_{T} of trigger π^{0}
－The decrease is stronger for the away－side correlation width
－The π^{0}－jet correlation measurement in pp collisions provides an important baseline for $\mathrm{Pb}-\mathrm{Pb}$ data

Back up

Charged particle jets spectra and full jet R_{AA}

Strong jet suppression：R＜ 0.5

π^{0} and jet reconstruction efficiency

－π^{0} reconstruction efficiency

$$
\varepsilon_{P I D}(E)=\frac{\text { clusters generated by } 2 \gamma \text { from } \pi^{0} \text { decay identified as } \pi^{0} \text { for } N L M=X}{\text { all clusters generated by } 2 \gamma \text { from } \pi^{0}} ;
$$

－Jet reconstruction efficiency
－the ratio between the number of reconstructed matched jets and the number of particle level jets in the jet acceptance

$$
\varepsilon_{j e t}\left(p_{\mathrm{T}, \mathrm{gen}}^{\mathrm{ch} \mathrm{jet}}\right)=\frac{N_{\text {matched }}}{N_{\text {particle level }}^{\left|\eta_{\text {en }}\right|<0.5}}
$$

π^{0} triggered jet azimuthal correlations

－Detector acceptance correction（event mixing method）
－ 100 events pool
－Z vertex $=(-10,10) \mathrm{cm}, 2 \mathrm{~cm}$ wide bins
－Track multiplicity， 9 bins on multiplicity
$C(\Delta \varphi)=\frac{\int N_{\text {pair }}^{\text {mixed }}\left(p_{T}^{\pi^{0}}, \Delta \varphi\right) d \Delta \varphi}{\int N_{\text {pair }}^{\text {sain }}\left(p_{T}^{\pi^{0}}, \Delta \varphi\right) d \Delta \phi} \cdot \frac{N_{\text {pair }}^{\text {same }}\left(p_{T}^{\pi^{0}}, \Delta \varphi\right)}{N_{\text {paiir }}^{\text {miid }}\left(p_{T}^{\pi^{0}}, \Delta \varphi\right)} \quad \frac{1}{N_{\text {trig }}^{\pi^{0}}} \frac{d N^{\text {jet }}}{d \Delta \phi}=\frac{\int N_{\text {pair }}^{\text {same }}\left(p_{T}^{\pi^{0}}, \Delta \phi\right) d \Delta \phi}{N_{\text {trig }}^{\pi_{i}^{0}}\left(p_{T}^{00}\right)} \cdot C(\Delta \phi)$
－π^{0} and jet reconstruction efficiency correction（bin－by－bin correction）
$-\pi^{0}$ reconstruction efficiency（non－uniform）：$\Delta p_{T}=1.0 \mathrm{GeV} / c$
－Jet finding efficiency（uniform）： 3 different jet p_{T} bins

$$
\text { -> 10-20, 20-30, } 30>\mathrm{GeV} / c
$$

$$
\frac{1}{N_{\text {trig }}^{\text {corrected }}} \frac{d N_{\text {pair }}^{\text {corrected }}}{d \Delta \phi}=\frac{1}{\Sigma_{\Delta p_{T,(i)}} \frac{1}{\varepsilon_{i}^{\pi^{0}}} \cdot N_{t r i g(i)}^{\pi^{0}}\left(\Delta p_{T}^{\text {trig }}\right)} \sum_{\Delta p_{T,(i)}} \frac{1}{\varepsilon_{i}^{\pi^{0}} \varepsilon^{j e t}} \frac{d N_{\text {pair }(i)}^{\text {Raw }}}{d \Delta \phi}\left(\Delta p_{T}^{\text {trig }}\right)
$$

