

Jet azimuthal distributions with high p_T neutral pion triggers in pp collisions $\sqrt{s} = 7$ TeV from LHC-ALICE

University of Tsukuba Daisuke Watanabe

Outline

- Physics motivation of π^0 -jet correlations
- A large Ion Collider Experiment (ALICE)
- Analysis procedure
- Results
- Next step: Pb-Pb analysis
- Summary

Physics motivation of π^0 -jet correlation

- Can control path length by tagging a recoil jet with triggered π^0 and changing p_T for π^0
- High p_T of π^0 -> longer path length of recoiling jets
- Direct measurement of path length dependence of "jet" quenching, not by hadron
- pp analysis is an important baseline for PbPb analysis

A Large Ion Collider Experiment (ALICE)

- Data set
 - pp collisions at $\sqrt{s} = 7$ TeV with EMCal triggered events
 - Number of events: 10 M

Charged jet reconstruction (FASTJET)

$$d_{ij} = \min(k_{ii}^{2p}, k_{ij}^{2p}) \frac{\Delta R^2}{R^2} \begin{cases} p = 1 & \text{k}_{\text{T}} \text{ algorithm} \\ p = 0 & \text{Cambridge/Aachen algorithm} \\ p = -1 & \text{anti-k}_{\text{T}} \text{ algorithm} \end{cases}$$

Procedure of jet finding

- 1. Calculate particle distance : d_{ij}
- 2. Calculate Beam distance $:d_{iB} = k_{ti}^{2p}$
- 3. Find smallest distance $(d_{ij} \text{ or } d_{ib})$
- 4. If d_{ij} is smallest combine particles
 If d_{ib} is smallest and the cluster
 momentum larger than threshold

call the cluster Jet

Parameters

- R size (= $\sqrt{\Delta \Phi^2 + \Delta \eta^2}$) : 0.4
- p_T cut on a single particle : 0.15 GeV/c
- Jet energy threshold : 10 GeV/c
- Jet acceptance : $|\eta| < 0.5$, $0 < \varphi < 2\pi$

M. Cacciari et al, JHEP 0804 (2008) 063

Energy dependence of shower shape parameter

- The opening angle of the neutral mesons decay photon becomes smaller,
 when increasing the neutral meson energy due to Lorentz boost
- In the EMCAL, when the energy of π^0 is lager than 5 GeV
 - The two clusters of decay photon start to be close
 - The electromagnetic showers start to overlap

The procedure of cluster splitting method

- 1. Select neutral cluster with $\lambda_0^2 > 0.3$, track matching etc
- 2. Find local maxima in the cluster
- Split the cluster in two new sub-clusters taking the two highest local maxima cells and aggregate all towers around them (form 3x3 cluster)
- Get the two new sub-clusters, and calculate energy asymmetry and invariant mass

 Overlap cell energy is calculated by using weight of each local maxima cell energy

Invariant mass and π^0 p_T distribution

- 3σ invariant mass window from peak mean is selected as π^0
- We can identify π^0 up to 40 GeV/c

Trigger p_⊤ dependence of azimuthal correlations

Increaseing charged jet p_T threshold

- Two clear jet-like peaks are observed, indicating that high p_T π^0 production is correlated with jet production
- The jet yields of near and away side increase with increasing trigger $\pi^0 p_T$

Near and away-side widths as a function of π^0 p_T

- Near and away-side widths decrease slightly with increasing trigger π^0 p_T
- Almost no difference observed for different jet p_⊤ thresholds studied

Next step: Pb-Pb analysis

- Study the path length dependence by selecting different trigger π^0 p_T in the ratio of the per-trigger yield (I_{AA})
- Possible to extract more details on path length dependence by combing information on centrality and event plane orientation

Summary

- π^0 -jet correlations have been measured in pp collisions at $\sqrt{s} = 7$ TeV with cluster splitting method
- Azimuthal yields per trigger π^0 increase with increasing trigger π^0 p_{T}
- Both near and away side Gaussian widths are decreasing with increasing p_T of trigger π^0
- The decrease is stronger for the away-side correlation width
- The π^0 -jet correlation measurement in pp collisions provides an important baseline for Pb-Pb data

Back up

Charged particle jets spectra and full jet R_{AA}

Strong jet suppression: R < 0.5

π^0 and jet reconstruction efficiency

• π^0 reconstruction efficiency

$$\varepsilon_{PID}(E) = \frac{\text{clusters generated by } 2\gamma \text{ from } \pi^0 \text{ decay identified as } \pi^0 \text{ for NLM} = X}{\text{all clusters generated by } 2\gamma \text{ from } \pi^0};$$

- Jet reconstruction efficiency
 - the ratio between the number of reconstructed matched jets and the number of particle level jets in the jet acceptance

$$\varepsilon_{jet}(p_{\mathrm{T,gen}}^{\mathrm{ch\, jet}}) = \frac{N_{\mathrm{matched}}}{N_{\mathrm{particle\, level}}^{|\eta_{\mathrm{gen}}| < 0.5}},$$

π^0 triggered jet azimuthal correlations

- Detector acceptance correction (event mixing method)
 - 100 events pool
 - Z vertex = (-10, 10) cm, 2 cm wide bins
 - -Track multiplicity, 9 bins on multiplicity

$$C(\Delta \varphi) = \frac{\int N_{pair}^{mixed}(p_T^{\pi^0}, \Delta \varphi) d\Delta \varphi}{\int N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi) d\Delta \varphi} \cdot \frac{N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi)}{N_{pair}^{mixed}(p_T^{\pi^0}, \Delta \varphi)} \qquad \qquad \frac{1}{N_{trig}^{\pi^0}} \frac{dN^{jet}}{d\Delta \varphi} = \frac{\int N_{pair}^{same}(p_T^{\pi^0}, \Delta \varphi) d\Delta \varphi}{N_{trig}^{\pi^0}(p_T^{\pi^0})} \cdot C(\Delta \varphi)$$

- π^0 and jet reconstruction efficiency correction (bin-by-bin correction)
 - π^0 reconstruction efficiency (non-uniform): $\Delta p_T = 1.0 \text{ GeV}/c$
 - Jet finding efficiency (uniform) : 3 different jet p_T bins

$$\frac{1}{N_{trig}^{corrected}} \frac{dN_{pair}^{corrected}}{d\Delta \phi} = \frac{1}{\sum_{\Delta p_{T,(i)}} \frac{1}{\varepsilon^{\pi^0}} \cdot N_{trig(i)}^{\pi^0}(\Delta p_T^{trig})} \sum_{\Delta p_{T,(i)}} \frac{1}{\varepsilon_i^{\pi^0} \varepsilon^{jet}} \frac{dN_{pair(i)}^{Raw}}{d\Delta \phi} (\Delta p_T^{trig})$$

