# CP Violation in B Decays

- Results from BaBar and Belle -

# H. Aihara University of Tokyo

Fourth Workshop on Mass Origin and Supersymmetry Physics, March 6&7, 2006, Tsukuba

# Why (still) flavor physics?

- If New Physics at TeV, it might manifest itself in flavor physics at B-factories via CPV in B /D, rare B/D and rare tau decays.
  - If it does not show up, we still want to know why.
- What is the role of measurements of CP violation in B meson system ?

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$



II

 $\gamma$  = measured as phase difference between  $b \rightarrow u$  and  $b \rightarrow c$  transitions

Measured in tree-level processes, and therefore insensitive to

New Physics.

 $2\beta$  = measured as phase difference between

$$B^0 \to \overline{B}^0 \to f \text{ and } B^0 \to f$$

decay paths.

Measured in tree and loop processes.

Loop probes New Physics.

### $\sin 2\beta$ : tree vs loop



Unless threre is a new phase(s) in a loop, measurements of mixing-induced CP violation should give the same  $\sin 2\beta$ .

### Belle 2005 update : $B^0 \rightarrow J/\psi K^0 w/386 M \overline{BB}$ pairs





# $\sin(2\beta)/\sin(2\phi_1)$





HFAG=Heavy Flavor Averaging Group



 $\beta = 68^{\circ}$  solution is disfavored (>2 $\sigma$ ) by

- Time dependent angular analysis of  $B^0 \to J/\psi K^{*0}$  (BaBar)
- Time dependent Dalitz analysis of  $B^0 \to D^0 \pi^0$  (Belle)

# Loops: How New Physics contributes to $b \rightarrow s$



### "Compelling Evidence" for CP Violation in a b→s mode



### $\eta'K^0$ (background subtracted)





'' $\sin 2\phi_1$  ''=+0.62±0.12±0.04 A=-0.04±0.08±0.06

significance>4σ

Belle 386M BB pairs

# $\sin(2\beta^{eff})/\sin(2\phi_1^{eff})$

HFAG HEP 2005 PRELIMINARY

(Belle data: hep-ex/0507037)

Almost all are systematically below the  $sin(2\beta)$  value from B $\rightarrow$ J/ $\psi$  K $^0$  modes



### New Physics ??

### $\Delta \sin 2\phi_1^{eff}$ in b $\rightarrow sqq$ golden modes (July 2005)

Very large effects of order unity,  $\Delta S \sim 1$ , are now ruled out.

Theory corrections are small and opposite in sign to the exp deviations.

 $\phi K^0$  (exp.) -0.22±0.19  $0.02^{+0.005}_{-0.008}$ pQCD **QCDF**  $0.02\pm0.01$  $0.03^{+0.01}_{-0.04} \pm 0.01$ **QCDF+LD**  $\eta'K^0(exp.)$ -0.21±0.09 **QCDF**  $0.01\pm0.01$  $0.00^{+0.00}_{-0.04}$ **QCDF+LD** 

A minimum of 1000 fb<sup>-1</sup> / experiment is required.

(Deviation from  $B \rightarrow \psi K^0$  result)

 $\Delta sin2\phi_1^{eff}$ 

-0.1

0.1

0

-0.2

-0.3

-0.4



Tree-level processes are immune to New Physics.

$$B^+ \rightarrow [K_S \pi^+ \pi^-]_D K^+$$

### Dalitz analysis



This final state arises from  $V_{us}$  suppressed and  $V_{ub}$  suppressed diagrams.



$$^{+}) = A_{R}$$



$$A(B^+ \to \overline{D^0}K^+) = A_B \qquad A(B^+ \to D^0K^+) = A_B r_B e^{i(\delta + \phi_3)}$$

 $r_{\rm R}$ = suppression due to Cabibbo and color matching  $= 0.1 \sim 0.2$ 

 $\delta$  = strong phase

 $D^0 \& D^0$  can decay to the same final state  $K_s^0 \pi^+ \pi^-$ .

The interference of the above amplitudes gives  $\phi_3$ .

The sensitivity to  $\phi_3$  is proportional to  $r_B$ .

$$A(B^- \to D^0 K^-) = \overline{A_B}$$

$$A(B^- \to D^0 K^-) = \overline{A_R}$$
  $A(B^- \to \overline{D^0} K^-) = \overline{A_R} r_R e^{i(\delta - \phi_3)}$ 

#### Decay amplitudes

Density of Dalitz plot distribution is proportional to |Amplitude|2.

To extract  $\phi_3$ ,  $\delta$  and r, we need to know  $f(m_+^2, m_-^2)$ , Dalitz distribution of  $D \to K_S \pi^+ \pi^-$ .

### $B^{+/-} \rightarrow D^0 K^{+/-}$ : $K_S \pi^+ \pi^-$ Dalitz plot distributions



# $\gamma/\phi_3$ results



#### Dalitz analysis

$$\phi_{3} = [68^{+14}_{-15} \pm 13(sys) \pm 11(model)]^{\circ}$$

$$[22^{\circ}, 113^{\circ}]$$

$$r_{B}(D^{0}K) = 0.21 \pm 0.08 \pm 0.03 \pm 0.04$$

$$r_{B}(D^{*0}K) = 0.12^{+0.16}_{-0.11} \pm 0.02 \pm 0.04$$



[hep-ex/0411049,0504013 Dalitz analysis

 $r_{\rm R}(D^0K^*) = 0.24^{+0.17}_{-0.18} \pm 0.09 \pm 0.04 \pm 0.$ 

$$\gamma = [70 \pm 31^{+12}_{-10}(sys)^{+14}_{-11}(model)]^{\circ}$$

$$[12^{\circ}, 137^{\circ}]$$

$$r_{B}(D^{0}K) = 0.118^{+0.079}_{-0.096} \pm 0.034^{+0.036}_{-0.034}$$

$$r_{B}(D^{*0}K) = 0.169 \pm 0.096^{+0.03}_{-0.028} -0.029$$

PRL 95 (2005) 121802



$$\phi_3 = 63 \pm {}^{15}_{12} \text{ deg.}$$

(Non-trivial constraint)



(Detail in Kusaka's talk, tomorrow.)

### *CP* Violation in $B^0 \to \rho^+ \rho^-$ and $\pi^+ \pi^-$ (Charmless two-body decays)



### +Loops (penguins)



$$Asym = S\sin(\Delta m_d \Delta t) + A(=-C)\cos(\Delta m_d \Delta t)$$

 $\Delta t$  = decay time interval of two B mesons

$$C_{\rho\rho} = 0$$

$$S_{\rho\rho} = \sin(2\alpha)$$

$$S_{\rho\rho} = \sin(2\alpha)$$

$$S_{\rho\rho} = \sqrt{1 - C_{\rho\rho}^{2}} \sin(2\alpha_{\text{eff}})$$

$$\delta = \delta_{\rho} - \delta_{T}$$

 $\alpha(\phi_2)_{eff}$  is shifted from  $\alpha(\phi_2)$  due to loops (aka penguin pollution).

VV final state is a mixture of CP eigenstates, while  $\pi^+\pi^-$  is CP even.  $\rho\rho$  could be less sensitive to (or more diffcult to extract)  $\alpha$ .

19

# Miracles in $B^0 \to \rho^+ \rho^-$

1. Penguin contribution turns out to be small.

$$Br(B^0 \to \rho^0 \rho^0) < 1.1 \times 10^{-6} \ (90\% C.L.) \ll Br(B^0 \to \rho^+ \rho^-), Br(B^+ \to \rho^+ \rho^0)$$
  
BaBar PRL94, 131801(2005)  $\sim 30 \times 10^{-6}$ 

Gronau-London, PRL 65 3381 (1990)



small Penguin pollution  $(\theta)$ 



$$\left|\alpha_{eff} - \alpha\right| < 14^{\circ} (90\%\text{C.L.})$$

$$\left|\alpha_{eff} - \alpha\right| < 35^{\circ} (90\%\text{C.L.}) \text{ for } B^0 \to \pi^+\pi^-$$

 $\rho\rho$  final state turns out to be fully polarized longitudinally.



Angular analysis shows a longitudinal fraction of the final state to be

BaBar 
$$f_L = 0.978 \pm 0.014^{+0.021}_{-0.029}$$
  
Belle  $f_L = 0.941^{+0.034}_{-0.040} \pm 0.030$ 

Belle 
$$f_L = 0.941^{+0.034}_{-0.040} \pm 0.030$$

PRL95,041805 (2005)

hep-ex/0601024

The longitudinally polarized state is a CP even eigenstate.

### Measurement of CP asymmetry for B $\rightarrow \rho^+\rho^-$



BaBar Belle 
$$S_{\rho\rho} = -0.33 \pm 0.24^{+0.08}_{-0.14} = 0.08 \pm 0.41 \pm 0.09$$
  $C_{\rho\rho} = -0.03 \pm 0.18 \pm 0.09 = 0.00 \pm 0.30 \pm 0.09$ 

$$S_{\rho\rho} = \sqrt{1 - C_{\rho\rho}^2} \sin(2\alpha_{\text{eff}})$$

### $\alpha$ : combining the *BABAR* measurements



## Belle Constraints on $\phi_2$ ( $\alpha$ )





 $B \rightarrow \rho \rho$  only

hep-ex/0601024

$$\phi_2(\gamma) = (88 \pm 17)^{\circ}$$
 $59^{\circ} < \phi_2 < 115^{\circ} (90\%\text{C.L.})$ 

B
$$\to$$
ππ PRL 95, 10801 (2005) & ρρ combined

$$\phi_2(\gamma) = (93^{+12}_{-11})^{\circ}$$
 $75^{\circ} < \phi_2 < 113^{\circ} (90\%\text{C.L.})$ 

#### WA ······ B → ππ 1.2 Combined $\cdots B \rightarrow \rho \rho$ H CKM fit 8.0 0.6 0.4 0.2 0 100 160 80 120 140 180 (deg)

### BaBar 232M pairs Belle 275M pairs

|          | $\alpha(\phi_2)^{\circ}$              |
|----------|---------------------------------------|
| W.A.     | 98.6 <sup>+12.6</sup> <sub>-8.1</sub> |
| Indirect | 97 <sup>+13</sup> <sub>-19</sub>      |
| All W.A. | 98.1 <sup>+6.3</sup> -7.0             |

 $\rho\rho$  yields the best  $\alpha$ .

 $\rho\pi$  helps to remove mirror solution.

 $\pi\pi$  has limited sensitivity.

Good agreement with indirect constraints.



#### The CKM Triangle Using Angles Only



$$\beta = 21.7^{+1.3}_{-1.2}$$

$$\gamma = 63^{+15}_{-12}$$

$$\therefore \quad \pi - \beta - \gamma = 95.3^{+15}_{-12}$$

$$\alpha (\equiv \pi - \beta - \gamma) = 98.6^{+12.6}_{-8.1}$$

good agreement

### Belle 350 fb<sup>-1</sup> + BaBar 240 fb<sup>-1</sup>



(Summer 2005)

$$\Delta_{\phi} = \sin 2\beta |\phi K^{0} - \sin 2\beta| J / \psi K^{0} = -0.22 \pm 0.19$$

$$\Delta_{\eta} = \sin 2\beta |\eta' K^{0} - \sin 2\beta |J/\psi K^{0} = -0.21 \pm 0.09$$

1000fb<sup>-1</sup> for each collaboration brings the error of  $\Delta_{\eta}$  down to 0.04.

### Integrated luminosity of Belle and BaBar



