CP Violation in B Decays

- Results from BaBar and Belle -

H. Aihara University of Tokyo

Fourth Workshop on Mass Origin and Supersymmetry Physics, March 6\&7, 2006, Tsukuba

Why (still) flavor physics?

- If New Physics at TeV, it might manifest itself in flavor physics at B factories via CPV in B/D, rare B/D and rare tau decays.
- If it does not show up, we still want to know why.
- What is the role of measurements of CP violation in B meson system ?

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Unless threre is a new phase(s) in a loop,
measurements of mixing-induced CP violation should give the same $\sin 2 \beta$.

Belle 2005 update : $B^{0} \rightarrow \mathrm{~J} / \psi K^{0}$ w/386 M $\overline{B B}$ pairs

$B^{0} \rightarrow J / \psi K_{L}^{0}$

$$
M_{b c}=\sqrt{E_{b e a m}^{* 2}-P_{J / \psi K s}^{* 2}}
$$

$$
\frac{\Gamma\left(\overline{B^{0}}(\Delta t) \rightarrow f\right)-\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}{\Gamma\left(\overline{B^{0}}(\Delta t) \rightarrow f\right)+\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}=D \sin 2 \beta \sin \left(\Delta m_{d} \Delta t\right)
$$

$\sin (2 \beta) / \sin \left(2 \phi_{1}\right)$

HFAG=Heavy Flavor Averaging Group

$\beta=68^{\circ}$ solution is disfavored $(>2 \sigma)$ by

- Time dependent angular analysis of $B^{0} \rightarrow J / \psi K^{* 0}$ (BaBar)
- Time dependent Dalitz analysis of $B^{0} \rightarrow D^{0} \pi^{0}$ (Belle)

Loops: How New Physics contributes to $b \rightarrow s$

New physics in loops?
B^{0}

Many new phases are possible in SUSY

Gluino-squark loop dominates.
$\Delta \sin 2 \beta$ can be significant (~ 0.2 or more).

"Compelling Evidence" for CP Violation in a $b \rightarrow$ s mode

$\frac{\Gamma\left(\overline{B^{0}}(\Delta t) \rightarrow f\right)-\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}{\Gamma\left(\overline{B^{0}}(\Delta t) \rightarrow f\right)+\Gamma\left(B^{0}(\Delta t) \rightarrow f\right)}=D \sin 2 \beta \sin \left(\Delta m_{d} \Delta t\right)$
$\eta^{\prime} K^{0}$ (background subtracted)

${ }^{\prime \prime} \sin 2 \phi_{1}{ }^{\prime \prime}=+0.62 \pm 0.12 \pm 0.04$
$A=-0.04 \pm 0.08 \pm 0.06$
significance $>4 \sigma$

Belle 386M BB pairs

$\sin \left(2 \beta^{\text {eff }}\right) / \sin \left(2 \phi_{1}^{\text {eff }}\right)$

HFAG
HEP 2005
(Belle data: hep-ex/0507037)

Almost all are systematically below the $\sin (2 \beta)$ value from $B \rightarrow J / \Psi K^{0}$ modes

$\mathrm{b} \rightarrow$ ccs World Average	10 0.69 0.03
- BäBar	$0.50 \pm 0.25_{-0.04}^{+0.07}$
\Varangle Belle	$0.44 \pm 0.27 \pm 0.05$
- Average	0.47 ± 0.19
- BäBar	$0.36 \pm 0.13 \pm 0.03$
צ Belle	$0.62 \pm 0.12 \pm 0.04$
Average	- ${ }^{\text {a }}$ - 0.50 ± 0.09
¢ BäBar	H- $0.95_{-0.32 \pm 0.10}^{0.23}$
$צ$ Belle	- $0.47 \pm 0.36 \pm 0.08$
\square° Average	0.75 ± 0.24
\cdots BäBar	$0.35{ }_{-0.33}^{+0,30} \pm 0.04$
צ Belle	$0.22 \pm 0.47 \pm 0.08$
¢ Average	0.31 ± 0.26
- BäBar	$-0.84 \pm 0.71 \pm 0.08$
- Average	-0.84 ± 0.71
¢ BäBar	$0.50_{-0.38}^{+0.34} \pm 0.02$
$\underset{\sim}{¢}$ Belle	$0.95 \pm 0.53_{-0.15}^{+0.12}$
$\bigcirc \quad$ Average	0.63 ± 0.30
¢ BäBar	$0.41 \pm 0.18 \pm 0.07 \pm 0.11$
\Varangle Belle	- $06 \pm 0.18 \pm 0.04_{-0.12}^{+0.19}$
\pm Average	$0.51 \pm 0.14{ }_{-0.08}^{+0.11}$
$\underline{\text { x }}$ BäBar	$0.63{ }_{-0.32 \pm 0.04}$
y^{∞} Belle	$0.58 \pm 0.36 \pm 0.08$
¢ Average	- 0.61 ± 0.23

New Physics??

$\Delta \sin 2 \phi_{1}^{\text {eff }}$ in $\mathrm{b} \rightarrow \mathrm{s} \bar{q} q$ golden modes (July 2005)

Tree-level processes are immune to New Physics.

$$
\begin{equation*}
B^{+} \rightarrow\left[K_{S} \pi^{+} \pi^{-}\right]_{D} K^{+} \quad \text { Dalitz analysis } \tag{3}
\end{equation*}
$$

This final state arises from $V_{u s}$ suppressed and $V_{u b}$ suppressed diagrams.

$$
A\left(B^{+} \rightarrow \overline{D^{0}} K^{+}\right)=A_{B} \quad A\left(B^{+} \rightarrow D^{0} K^{+}\right)=A_{B} r_{B} e^{i\left(\delta+\phi_{3}\right)}
$$

$$
r_{B}=\text { suppression due to Cabibbo and color matching }
$$

$$
=0.1 \sim 0.2
$$

$$
\delta=\text { strong phase }
$$

$\overline{D^{0}} \& D^{0}$ can decay to the same final state $K_{S}^{0} \pi^{+} \pi^{-}$.
The interference of the above amplitudes gives ϕ_{3}.
The sensitivity to ϕ_{3} is proportional to r_{B}.

$$
A\left(B^{-} \rightarrow D^{0} K^{-}\right)=\overline{A_{B}} \quad A\left(B^{-} \rightarrow \overline{D^{0}} K^{-}\right)=\overline{A_{B}} r_{B} e^{i\left(\delta-\phi_{3}\right)}
$$

Decay amplitudes

Density of Dalitz plot distribution is proportional to Amplitudel 2.

$$
\mathbf{B}^{+}: \quad M_{+}=f\left(m_{+}^{2}, m_{-}^{2}\right)+\boldsymbol{r} e^{i \phi_{3}+i \delta} f\left(m_{-}^{2}, m_{+}^{2}\right)
$$

obtain from tagged D^{0} $\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)$ sample
$\mathbf{B}^{-}: \quad M_{-}=f\left(m_{-}^{2}, m_{+}^{2}\right)+\boldsymbol{r} e^{-i \phi_{3}+i \delta} f\left(m_{+}^{2}, m_{-}^{2}\right) \quad r=\frac{\left|A_{2}\right|}{\left|A_{l}\right|}$

$$
m_{+}=\mathrm{m}\left(\mathrm{~K}_{\mathrm{s}} \pi^{+}\right), \quad m_{-}=\mathrm{m}\left(\mathrm{~K}_{\mathrm{s}} \pi^{-}\right)
$$

To extract ϕ_{3}, δ and r, we need to know $f\left(m_{+}^{2}, m_{-}^{2}\right)$, Dalitz distribution of $D \rightarrow K_{S} \pi^{+} \pi^{-}$.

$B^{+/-} \rightarrow D^{0} K^{+/-}: K_{S} \pi^{+} \pi^{-}$Dalitz plot distributions

γ / ϕ_{3} results

(Detail in Kusaka's talk, tomorrow.)
$C P$ Violation in $B^{0} \rightarrow \rho^{+} \rho^{-}$and $\pi^{+} \pi^{-}$(Charmless two-body decays)

+ Loops (penguins)

$$
\text { Asym }=S \sin \left(\Delta m_{d} \Delta t\right)+A(=-C) \cos \left(\Delta m_{d} \Delta t\right) \quad \Delta t=\text { decay time interval of two } B \text { mesons }
$$

$$
\begin{aligned}
& C_{\rho \rho}=0 \\
& S_{\rho \rho}=\sin (2 \alpha)
\end{aligned}
$$

$$
C_{\rho \rho} \propto \sin (\delta)
$$

$$
S_{\rho \rho}=\sqrt{1-C_{\rho \rho}^{2}} \sin \left(2 \alpha_{\mathrm{eff}}\right)
$$

$$
\delta=\delta_{P}-\delta_{T}
$$

$\alpha\left(\phi_{2}\right)_{\text {eff }}$ is shifted from $\alpha\left(\phi_{2}\right)$ due to loops (aka penguin pollution).
$V V$ final state is a mixture of $C P$ eigenstates, while $\pi^{+} \pi^{-}$is $C P$ even. $\rho \rho$ could be less sensitive to (or more diffcult to extract) α.

Miracles in $B^{0} \rightarrow \rho^{+} \rho^{-}$

1. Penguin contribution turns out to be small.

$$
\begin{array}{cc}
B r\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)<1.1 \times 10^{-6}(90 \% \text { C.L. }) & \ll B r\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right), \\
\text {BaBar PRL94, 131801(2005) } & \left.\sim 30 \times 10^{+} \rightarrow \rho^{+} \rho^{0}\right) \\
\hline
\end{array}
$$

Gronau-London, PRL 653381 (1990)

$$
\left|\alpha_{e f f}-\alpha\right|<14^{\circ}(90 \% \text { C.L. })
$$

$$
\left|\alpha_{e f f}-\alpha\right|<35^{\circ}(90 \% \text { C.L. }) \text { for } B^{0} \rightarrow \pi^{+} \pi^{-}
$$

2. $\rho \rho$ final state turns out to be fully polarized longitudinally.

$$
\pi^{+}
$$

$$
\lambda_{\rho}=0, \pm 1
$$

Angular analysis shows a longitudinal fraction of the final state to be

BaBar $f_{L}=0.978 \pm 0.014_{-0.029}^{+0.021}$
PRL95,041805 (2005)
Belle $f_{L}=0.941_{-0.040}^{+0.034} \pm 0.030$ hep-ex/0601024
The longitudinally polarized state is a CP even eigenstate.

Measurement of CP asymmetry for $B \rightarrow \rho^{+} \rho^{-}$

BABAR, PRL 95, 041805 (2005)

	BaBar	Belle
$S_{\rho \rho}$	$-0.33 \pm 0.24_{-0.14}^{+0.08}$	$0.08 \pm 0.41 \pm 0.09$
$C_{\rho \rho}$	$-0.03 \pm 0.18 \pm 0.09$	$0.00 \pm 0.30 \pm 0.09$

$$
S_{\rho \rho}=\sqrt{1-C_{\rho \rho}^{2}} \sin \left(2 \alpha_{\mathrm{eff}}\right)
$$

α : combining the $B A B A R$ measurements

Belle Constraints on $\phi_{2}(\alpha)$

$B \rightarrow \rho \rho$ only
hep-ex/0601024

$\mathrm{B} \rightarrow \pi \pi$ PRL 95, 10801 (2005) \& $\rho \rho$ combined

$$
\begin{aligned}
& \phi_{2}(\gamma)=\left(93_{-11}^{+12}\right)^{\circ} \\
& 75^{\circ}<\phi_{2}<113^{\circ}(90 \% \text { C.L. })
\end{aligned}
$$

No $\rho \pi$ yet \Rightarrow mirror solution is still allowed.

	$\alpha\left(\phi_{2}\right)^{\circ}$
W.A.	$98.6_{--1.6}^{+12.6}$
Indirect	97_{-19}^{+13}
All W.A.	$98.1_{-7.0}^{+6.3}$

$\rho \rho$ yields the best α.
$\rho \pi$ helps to remove mirror solution.
$\pi \pi$ has limited sensitivity.
Good agreement with indirect constraints.

In conclusion

The CKM Triangle Using Angles Only

Belle 350 fb-1 + BaBar $240 \mathrm{fb}^{-1}$

(Summer 2005)

$$
\begin{aligned}
& \Delta_{\phi}=\sin 2 \beta\left|\phi K^{0}-\sin 2 \beta\right| J / \psi K^{0}=-0.22 \pm 0.19 \\
& \Delta_{\eta}=\sin 2 \beta\left|\eta^{\prime} K^{0}-\sin 2 \beta\right| J / \psi K^{0}=-0.21 \pm 0.09
\end{aligned}
$$

$1000 \mathrm{fb}^{-1}$ for each collaboration brings the error of Δ_{η} down to 0.04 .

Integrated luminosity of Belle and BaBar

