格子QCDによる $|V_{ub}|$, $|V_{ts}|/|V_{td}|$ の決定

大野木 哲也 (京大基研)

March 8, 2005, Tsukuba

- JLQCD collaboration との共同研究: Nucl. Phys. Proc. Suppl. 119, 610 (2003), Phys. Rev. Lett. 91, 212001 (2003), Phys. Rev. D 64, 114505 (2001),
- 福永優(広大)との共同研究:
 Phys. Rev. D 71, 034506 (2005).

Introduction

Over-constraining the CKM elements through independent processes can probe possible signals of new physics beyond the standard model.

 $|V_{td}|$:

FCNC contribution from new physics. Consistency check with ϕ_3 measurement.

Determination of
$$|V_{ub}|$$
 from $B \to \pi l \nu$

$$\langle \pi(k) | \bar{q} \gamma^{\mu} b | B(p) \rangle = f^{+}(q^{2}) \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f^{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}, \quad (1)$$
$$\frac{d\Gamma(B \to \pi l \nu)}{dq^{2}} = \frac{G_{F}^{2}}{24\pi^{3}} |V_{ub}|^{2} [(v \cdot k)^{2} - m_{\pi}^{2}]^{3/2} |f^{+}(q^{2})|^{2}.$$

- Lattice cacuclation is possible only for high $q^2 (> 16 {\rm GeV}^2)$ region.
- Experimental data is phase space suppressed for high q^2 region.
- Statistical error is larger for form factors than simpler matrix elements.
- Chiral extrapolation error also exists.

 $|V_{ub}|$ determination

Determination of $|V_{td}|$ and $|V_{ts}|$ from $B\overline{B}$ mixing

$$\Delta M_{B_{d(s)}} ~~ \propto ~~ |V_{td(s)}|^2 f^2_{B_{d(s)}} B_{B_{d(s)}}$$

- $\Delta M_{B_{d(s)}}$ will be measured at Belle, Babar, the TeVatron with 2% accuracy.
- Precise lattice determination of f_B , B_B , $B_B = \frac{f_{B_s}B_{B_s}^{1/2}}{f_{B_d}B_{B_d}^{1/2}}$ are indispensable.
- Large chiral extrapolation error · · · chiral log ~ 10% C.f. N. Yamada's talk at lattice 2001. A. S. Kronfeld and S. M. Ryan Phys. Lett. B 543, 59 (2002). S. Aoki et al. hep-lat/0307039.

Unquenched lattice results on the decay constants $\Phi \equiv f_{HL}\sqrt{M_{HL}}$.

$$\begin{split} f_{B_d} &= 191(10) \binom{+12}{-22} \text{ MeV, } f_{B_s} = 215(9) \binom{+14}{-13} \text{ MeV, and } f_{B_s}/f_{B_d} = 1.13(3) \binom{+13}{-2}, \\ f_{B_d} \sqrt{\hat{B}_{B_d}} &= 215(11) \binom{+15}{-27} \text{ MeV, } f_{B_s} \sqrt{\hat{B}_{B_s}} = 245(10) \binom{+19}{-17} \text{ MeV, and } \xi = 1.14(3) \binom{+13}{-2}. \end{split}$$

Goal

Propose a method to improve the accuracy of $|V_{ub}|$ and $|V_{td}/|V_{ts}|$ determination using a feasible lattice QCD calculation .

- $|V_{ub}|$: a new method for the dispersive bound.
- $|V_{td}|/|V_{ts}|$: lattice estimate of the Grinstein ratio

$|V_{ub}|$: the dispersive bound.

Basic Idea

The differential decay rate is written as

$$\frac{d\Gamma(B \to \pi l\nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 [(v \cdot k)^2 - m_\pi^2]^{3/2} |f^+(q^2)|^2.$$
(3)

In order to detemine $\left|V_{ub}
ight|$ using data for all q^2 region, we need to have

•
$$\Gamma_i = \int_{q_i^2}^{q_{i+1}^2} dq^2 \frac{d\Gamma}{dq^2}$$
 from experiment $(i = 1, \cdots, N_{bin})$,

• lattice results $f^+(q_J^2)$ $(J=1,\cdots,L)$ for large q^2 ,

• a reliable method to extrapolate the form factor $f^+(q^2)$ to all q^2 region,

We exploit the dispersive bound for extrapolation.

M. Fukunaga and T. Onogi

Review of the dispersive bound

An exact bound on the form factors at $f^0(q^2)$, $f^+(q^2)$ for arbitrary q^2 , which can be derived from OPE and dispersion relations for the 2pt functions of vector current V^{μ} ($\bar{b}u$). If we know the form factor values $f^0(q)$, $f^+(q)$ for several points $q^2 = q_1^2$ $(J = 1, \dots, L)$, we can further restrict the bound as

$$F^{lo}(q^2; \vec{f}) \leq f(t) \leq F^{up}(q^2; \vec{f})$$
(4)

where $F^{up/lo}(q^2, \vec{f})$ are solutions of quadratic equations whose coefficents are are known functions of

- kinematical paremeters : $q^2.m_B$, m_B^* , m_π , (1)

(2)OPE parameters: Wilson coefficients and vacuum condensates.

nonperturbative inputs: inputs $\{q_I^2\}, f^{0,+}(q_I^2) \ (J = 1, \dots, L).$ (3)

Figure 1: bound of $f^+(t), f^0(-t)$ for one example set of inputs \vec{f} without and with the kinematical constraint $f^+(0) = f^0(0)$

Strong model independent bound if lattice inputs have no errors.

M. Fukunaga and T. Onogi

Lattice inputs $f(q_1^2), \cdots f(q_L^2)$ have errors.

 \Rightarrow Statistical treatment, L. Lellouch, Nucl. Phys. B 479, 353 (1996)

- Probability distribution $\mathcal{P}_{initial}$ of the dispersive bound is obtained from a random Gaussian samples based on lattice results (and errors).
- The following consistency conditions are imposed, which makes it a conditional distribution \mathcal{P}_{condA} .

Condition A

- The quadratic equations to determine the upper/lower bounds should have real solutions.
- The solutions of the upper/lower bounds should allow the kinematical condition $f^+(0) = f^0(0)$.

Model independent bounds on $f^{0,+}(q^2)$ at 90%,66%, 30% confidence levels.

 $|V_{ub}|$ determination

Use of global q^2 dependence

We use the following physical condition with experimental data to reweight the probability distribution to make a new conditional distribution $\mathcal{P}_{condA+B}$.

 $\begin{array}{l} \mbox{Condition B} \\ \mbox{The experimental data } \Gamma_i^{exp} \mbox{'s should lie within} \\ \mbox{the upper and lower bounds from the theory simultaneously for all i , i.e.} \\ & |V_{ub}|^2 \gamma_i^{lo} < \Gamma_i^{exp} < |V_{ub}|^2 \gamma_i^{up} \mbox{(i=1, \cdots, N_{bin}),} \\ \mbox{where } \gamma_i^{up/lo}(\vec{f}) \equiv \frac{G^2}{192\pi^3 m_B^3} \int_{q_i^2}^{q_i^2+1} dt \left|F_{up/lo}^+(t; \vec{f^+}, \vec{f^0})\right|^2 \lambda(q^2)^{3/2}, \end{array}$

 $|V_{ub}|$ determination

Setup

Lattice form factors

created.

(quenched JLQCD lattice data+soft pion theorem),

S. Aoki et al., Phys. Rev.D 64 (2001) 114505.

Experimental	branching fraction	on (CLEO data),
S. B.Anthar et	al., Phys. Rev.D 68	(2003) 072003.

	2	$c + \langle 2 \rangle$	e(1/2)		
	q^2	$f^+(q^2)$	$f^{\circ}(q^2)$	$B(0 < a^2 < 8 \text{GeV}^2)$	0.43 ± 0.11
	17.79	1.03 ± 0.22	0.407 ± 0.092	D(0 < q < 0 corr)	
	19.30	1.24 ± 0.21	0.45 ± 0.11	$B(8 < q^2 < 16 \text{GeV}^2)$	0.65 ± 0.11
	20.82	1.54 ± 0.27	0.51 ± 0.14	$B(16 < q^2 < q^2_{max} \mathrm{GeV}^2)$	0.25 ± 0.09
	q_{max}^2	$\sim \frac{f_B}{f_B} - \frac{\hat{g}_b}{2 + 2}$	f_B/f_{π}	2000 samples for $\Gamma_i \equiv \Gamma_{to}$	$_{t}B_{i}$.(Gaussian)
	-mua	$J\pi \; 1 - q^2 / m_{B^*}^2$	0 D / 0	$ V_{ub} $ · 2000 samples for V	which uniformly
$f_B = 190 \pm 30$ MeV, (Gaussian)				$ v_{u0} $. 2000 sumples for $ v_{u0} $ when unitering	
$f_{B^*} = 190 \pm 30 \text{ MeV} \text{ (Gaussian)}$				distributes over $[1.0, 6.0]$	× 10 °.
$g = [0.3, 0.9]$ (uniform). $O(10^7)$ samples are					

Figure 2: CLB for $f^{0,+}(q^2)$ with JLQCD's lattice input, and CLEO's experimental data

Results with JLQCD inputs

•
$$|V_{ub}| = (3.73 \pm 0.53) \times 10^{-3}$$

•
$$0.126 < f(0) < 0.293$$
 (66% CL)

Discussions

Comparison with analysis without dispersive bounds. JLQCD, CLEO and PDG:

$$\begin{split} \int_{q^2=16GeV^2}^{q^2_{max}} dq^2 \frac{d\Gamma(B \to \pi l\nu)}{dq^2} |_{JLQCD} &= |V_{ub}|^2 (1.71 \pm 0.61 \pm 0.12 \pm 0.44) (\text{psec}^{-1}) \\ &B(q^2 > 16GeV^2)_{CLEO} &= 0.25 \pm 0.09 \\ &\tau_{B^0}|_{PDG} &= 1.546 \pm 0.029 (\text{psec}) \\ &\Rightarrow |V_{ub}| = (3.08 \pm 0.88) \times 10^{-3}. \text{ (c.f. } |V_{ub}| = (3.73 \pm 0.53) \times 10^{-3} \text{ from dispersive bound.)} \end{split}$$

• Errors are smaller with dispersive bound.

• Central value is changed.

$|V_{td}|/|V_{ts}|$: Grinstein ratio

Chiral behavior of f_B , f_D

Partially quenched chiral perturbation theory (Sharpe and Zhang Phys. Rev. D53 (1996) 5125.)

$$(\Phi) = \kappa [1 + (\Delta f_{\mathrm{Qq}}) + C_1 m_{\mathrm{q}} + \cdots]$$

where

$$(\Delta f_{
m Qq}) = -rac{(1+3g^2)}{(4\pi f)^2} [rac{3}{4}m_{
m qq}^2 \ln(rac{m_{
m qq}^2}{\Lambda^2})]$$

 f_{B_d} : Chiral extrapolation with log term is necessary. g is the $B^*B\pi$ coupling, where recent CLEO experiments suggests $g = 0.59 \pm 0.01 \pm 0.07$. A. Anastassov et al. (CLEO collab.), Phys. Rev. D67 (2003) 032003.

Grinstein ratio

Ginstein considered the ratio R_1 which is close to unity.

$$R_1 \quad = \quad rac{f_{B_s}}{f_{B_d}} / rac{f_{D_s}}{f_{D_d}}.$$

(C. G. Boyd, B. Grinstein, Nucl. Phys. B 442 (1995) 205.)

In this combination, systematic errors in the chiral extrapolation are expected to cancel in the B/D ratio partially up to corrections proportional to $(m_s - m_d)/(1/M_D - 1/M_B)$. Other systematic errors are expected to cancel in the SU(3) ratio.

Estimate of $R_1 - 1$ from chiral perturbation theory

M.Booth, hep-ph/9412228 (C.f. S.Sharpe and Y. Zhang, PRG53(1996)5125, M.Booth, PRD51(1995)2338) In $N_f = 2$ case, numerically,

$$R_1 - 1 = 0.17g^2 - 0.15GeV^{-1}g(g_1 - g_2)$$
$$= 0.028 \sim 0.087$$

for a range of values of parameters, where g is $B^*B\pi$ coupling and g_1, g_2 are coeffs. of 1/M correction to $B^*B\pi$ coupling. Consevative estimate of error of R_1 is 5%, however,

- Some of the correction terms are neglected in the calculations.
- The true values of coefficients are not known.

Therefore, we do not know how to reduce the theoretical errors of chiral perturbation theory for R_1 any further.

Lattice Setup

Heavy quark	: clover (Fermilab formalism)
Light quark	: clover
Gauge	: standard Wilson ($n_f = 2$ unquenched calculation)

- Both the B and D meson can be covered.
- B/D ratio can be taken.

Parameters for the simulation

 $n_f = 2$, $20^3 \times 48$ lattices at $\beta = 5.2$, $c_{sw} = 2.02$. 5 light sea quark masses (κ_l). 8 heavy quark masses (κ_h) correspondings to each sea quark masses.

 $|V_{ub}|$ determination

Our unquenched lattice results for the Grinstein ratio

Sea quark mass dependence of the Grinstein ratio $(\Phi_{B_s}/\Phi_{B_d})/(\Phi_{D_s}/\Phi_{D_d})$ in r_0 unit. The chiral extrapolation error is suppressed to 2% level.

Systematic errors

1. Chiral extrapolation

Estimated by comparing different fitting functions. \sim 0.4% (c.f. previous graph)

2. Discretization errors

Leading error of $O((ap)^2)$ cancells in the ratio.

Remaining dominant error is $O((ap)^2(m_s - m_d)(1/m_c - 1/m_b))$, which gives 0.6% by naive order estimation.

3. Perturbative errors

Leading error of $O(\alpha^2)$ cancells in the ratio. Remaing dominant error is $O(\alpha a m_s)$ which gives 0.7% by naive order estimation.

4. Uncertainty in the strange quark mass

Estimated by comparing result of κ_{s_2} with that of κ_{s_1} , which gives negligible errors $\sim 0.2\%$

Results

JLQCD preliminary results for the Grinstein ratio $R_1\equiv {f_{B_s}\over f_{B_d}}/{f_{D_s}\over f_{D_d}}$

 $\begin{array}{rcl} R_1 &=& 1.02 & \pm 0.01 & \pm 0.01 \\ & & {\rm stat.} & {\rm chiral\ ext.,\ disc., pert., } \kappa_s \end{array}$

Grinstein ratio is a useful quantity for the determination of CKM elements $|V_{ts}|/|V_{td}|$ from TeVatron and CLEO-c experimental data. Lattice QCD can provide the value of R_1 more precisely than the chiral perturbation theory.

CLEO-c plans to measure f_{D_s} , f_{D_d} with 2% accuracy.

$$\Rightarrow (f_{B_s}/f_{B_d}) = \left(\frac{f_{B_s}}{f_{B_d}}/\frac{f_{D_s}}{f_{D_d}}\right) \times \left(f_{D_s}/f_{D_d}\right)^{CLEO-c}$$

Summary

- The determination of $|V_{ub}|$ suffers from the limited kinematical region in lattice calculation as well as large statistical and systematic errors.
- Using perturbative QCD and dispersive bounds we can improve the accuracy $|V_{ub}|$.
- The determination of $|V_{td}|/|V_{ts}|$ suffers from large errors from the chiral extrapolation.
- Using the Grinstein ratio we can extract $|V_{td}|/|V_{ts}|$ more precisely owing to the approximate heavy quark symmetry and the SU(3) flavor symmetry.
- In both cases, more precise experimental data will help. $B \rightarrow \pi l \nu$ spectrum from B factories. D meson decay constants from charm factories.

 $\left|V_{ub}
ight|$ determination

Backup Slides

The dispersive bound

Consider the vacuum polarization function with ub current $V^{\mu\nu} \equiv \bar{u}\gamma^{\mu}b$ given by,

$$\Pi^{\mu\nu} = i \int d^4x e^{iqx} \langle 0|T[V^{\mu}(x)V^{\nu\dagger}(0)]|0\rangle = -(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\Pi_T(q^2) + q^{\mu\nu}\Pi_L(q^2).$$

transverse part longditudinal part

From the optical theorem, the imaginary part can be expressed by the sum of all the intermidiate hadronic states.

$$\operatorname{Im}\Pi^{\mu\nu}(q) = \frac{1}{2} \sum_{\Gamma} (2\pi)^4 \delta^4(q - p_{\Gamma}) \langle 0|V^{\mu}|\Gamma \rangle \langle \Gamma|V^{\nu\dagger}|0\rangle,$$
(5)

where $|\Gamma\rangle$ denotes B^* , $B\pi$ and all possible hadron states created by V^{μ} . L.H.S. is calculable by PQCD if q is far from the resoncance, R.H.S contains $\langle 0|V^{\mu}|B\pi\rangle$.

Cauchy's theorem for complex functions
$$\int_{C} \frac{dz}{2\pi i} \frac{f(z)}{(z-a)^{2}} = f'(a)$$

$$\mathbf{\chi}(Q^{2}) = \frac{d}{dt}(t\Pi(t))|_{t=-Q^{2}} = \int_{C_{1}} \frac{dt}{2\pi i} \frac{t\Pi(t)}{(t+Q^{2})^{2}} + \int_{C_{2}} \frac{dt}{2\pi i} \frac{t\Pi(t)}{(t+Q^{2})^{2}} + \int_{C_{3}} \frac{dt}{2\pi i} \frac{t\Pi(t)}{(t+Q^{2})^{2}}$$

$$= \int_{0}^{\infty} \frac{dt}{\pi} \frac{t \text{Im}\Pi(t)}{(t+Q^{2})^{2}} \cdots \text{ once subtracted dispersion relation}$$

$$\mathbf{\chi}(Q^{2}) \text{ is calculable by PQCD if } -Q^{2} \text{ is far from the resonance.}$$
This equation holds for Π_{L} and Π_{T} .

Since all the states give positive contributions, if we just take $|B^*\rangle$, $|B\pi\rangle$ states and drop all the excited states, we obtain an EXACT INEQUALITY

$$\begin{split} & \text{Im}\Pi_{L}(t) \geq \frac{3}{2} \frac{t_{+}t_{-}}{16\pi} \sqrt{(t-t_{+})(t-t_{-})} \frac{|f^{0}(t)|^{2}}{t^{3}} \theta(t-t_{+}) \\ & \text{Im}\Pi_{L}(t) \geq \pi (\frac{m_{B^{*}}}{f_{B^{*}}})^{2} \delta(t-m_{B^{*}}) + \frac{3}{2} \frac{t_{+}t_{-}}{48\pi} [(t-t_{+})(t-t_{-})]^{3/2} \frac{|f^{+}(t)|^{2}}{t^{3}} \theta(t-t_{+}), \end{split}$$

where $t \equiv q^2$, $t_{\pm} \equiv (m_B \pm m_{\pi})^2$. Using the dispersion relatoins we obtain,

$$\chi_L(Q^2) \geq \frac{1}{\pi} \int_{t_+}^{\infty} k_L^0(t, Q^2) |f^0(t)|^2$$
(6)

$$\chi_T(Q^2) \geq (\frac{m_{B^*}}{f_{B^*}})^2 + \frac{1}{\pi} \int_{t_+}^{\infty} k_L^+(t, Q^2) |f^+(t)|^2$$
(7)

Both equations can be written in the form as $J(Q^2) > \frac{1}{\pi} \int_{t_+}^{\infty} k^+(t,Q^2) |f(t)|^2$

Making the change of variables as
$$t o z$$
 where $rac{1+z}{1-z} = \sqrt{rac{t_+-t}{t_+-t_-}}$,

$$J(Q^2) \ge \int_{|z|=1} \frac{dz}{2\pi i z} |\phi(z, Q^2) f(z)|^2 = \langle \phi f | \phi f \rangle$$
(8)

where we defined the innerproduut as $\langle g|h\rangle = \int_{|z=1|} \frac{dz}{2\pi i z} \overline{g(z)} h(z)$

The function $g_t(z) \equiv \frac{1}{1 - \overline{z(t)}z}$ can be used to extract the form factor at z(t) as

$$\langle g_t | \phi f \rangle = \phi(z(t), Q^2) f(t)$$
 (9)

$$\phi(z,Q^2) = \sqrt{\frac{2t_+t_-}{4\pi}} \frac{1}{t_+ - t_-} \frac{1+z}{(1-z)^{5/2}} (\beta(0) + \frac{1+z}{1-z})^{-2} (\beta(-Q^2) + \frac{1+z}{1-z})^{-2}, \quad (10)$$

where $\beta = \sqrt{(t_{+} - t)/(t_{+} - t_{-})}$.

Perturbative QCD results

$$\chi_L(Q^2) = \frac{1}{\pi m_b^2} \int_0^1 dx \frac{(m_b^2/x) Im \Pi_L^{pert}(x)}{(1 + (Q^2/m_b^2)x)^2} + \frac{m_b \langle \bar{u}u \rangle_{1GeV}}{(Q^2 + m_b^2)^2} + \frac{1}{(Q^2 + m_b^2)^2} \langle \frac{\alpha_s}{12\pi} G^2 \rangle,$$

$$\chi_T(Q^2) = \frac{1}{\pi m_b^2} \int_0^1 dx \frac{(m_b^2/x) Im \Pi_T^{pert}(x)}{(1 + (Q^2/m_b^2)x)^3} + \frac{m_b \langle \bar{u}u \rangle_{1GeV}}{(Q^2 + m_b^2)^3} + \frac{1}{(Q^2 + m_b^2)^3} \langle \frac{\alpha_s}{12\pi} G^2 \rangle,$$

where

$$Im\Pi_{L}^{pert}(x) = \frac{3}{8\pi}x(1-x)^{2}[1+\mathcal{O}(\alpha_{f})],$$

$$Im\Pi_{T}^{pert}(x) = \frac{1}{8\pi}(1-x)^{2}[(2+x)+\mathcal{O}(\alpha_{f})],$$

1-loop results by L. J. Reinders et al., Phys. Lett. B 334 (1994) 175.

$$\chi_L(Q^2 = 0 \text{GeV}^2) = 1.5 \times 10^{-2}, \qquad \chi_T(Q^2 = 0 \text{GeV}^2) = 5.6 \times 10^{-4}.$$
at 1-loop,

where $m_b = 4.3 \text{ GeV}$, $\langle \bar{u}u \rangle_{1GeV} = (-0.24GeV)^3$, $\langle \frac{\alpha_s}{\pi}G^2 \rangle = 0.02(1)GeV^4$, are used. Scheme dependence is tiny (perturbative correction is undercontrol). Power corrections from condensates are tiny.