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Introduction

Over-constraining the CKM elements through independent processes can probe

possible signals of new physics beyond the standard model.
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Role of |Vub| and |Vts/Vtd|
|Vub|: Consistency check with φ1 measurement.

|Vtd|: FCNC contribution from new physics.

Consistency check with φ3 measurement.

1



M. Fukunaga and T. Onogi |Vub| determination

Determination of |Vub| from B → πlν
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dΓ(B → πlν)

dq2
=

G2
F

24π3
|Vub|2[(v · k)2 − m2

π]
3/2|f+(q2)|2. (2)

• Lattice cacuclation is possible only for high q2(> 16GeV2) region.

• Experimental data is phase space suppressed for high q2 region.

• Statistical error is larger for form factors than simpler matrix elements.

• Chiral extrapolation error also exists.
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Quenched Lattice results for the form factor

15 20 25 30

q
2

(GeV
2
)

0.0

1.0

2.0

3.0

f
+
(q

2
)

15 20 25 30

q
2

(GeV
2
)

0.0

1.0

2.0

3.0

15 20 25 30

q
2

(GeV
2
)

0.0

1.0

2.0

3.0

15 20 25 30

q
2

(GeV
2
)

0.0

1.0

2.0

3.0

f
0
(q

2
)

q2 dependence of B → πlν form factors

f+(q2) (filled) and f0(q2) (open). 4
UKQCD, 5: APE, 2: Fermilab, © :JLQCD.

πlν : |Vub| = (2.88 ± 0.63+0.48
−0.39) × 10−3.
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Determination of |Vtd| and |Vts| from BB mixing

∆MBd(s)
∝ |Vtd(s)|2f2

Bd(s)
BBd(s)

• ∆MBd(s)
will be measured at Belle, Babar, the TeVatron with 2% accuracy.

• Precise lattice determination of fB, BB , ξ ≡
fBsB

1/2
Bs

fBd
B

1/2
Bd

are indispensable.

• Large chiral extrapolation error · · · chiral log ∼ 10%

C.f. N. Yamada’s talk at lattice 2001.

A. S. Kronfeld and S. M. Ryan Phys. Lett. B 543, 59 (2002).

S. Aoki et al. hep-lat/0307039 .
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Unquenched lattice results on the decay constants Φ ≡ fHL

√
MHL.
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fBd
= 191(10)(+12

−22) MeV, fBs = 215(9)(+14
−13) MeV, and fBs/fBd

= 1.13(3)(+13
− 2),

fBd

q

B̂Bd
= 215(11)(+15

−27) MeV, fBs

q

B̂Bs = 245(10)(+19
−17) MeV, and ξ = 1.14(3)(+13

− 2).
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Goal

Propose a method to improve the accuracy of

|Vub| and |Vtd/|Vts| determination

using a feasible lattice QCD calculation .

• |Vub| : a new method for the dispersive bound.

• |Vtd|/|Vts| : lattice estimate of the Grinstein ratio
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|Vub| : the dispersive bound.
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Basic Idea

The differential decay rate is written as

dΓ(B → πlν)

dq2
=

G2
F

24π3
|Vub|2[(v · k)

2 − m
2
π]

3/2|f+
(q

2
)|2. (3)

In order to detemine |Vub| using data for all q2 region, we need to have

• Γi =
R q2

i+1

q2
i

dq2 dΓ
dq2 from experiment (i = 1, · · · , Nbin),

• lattice results f+(q2
J) (J = 1, · · · , L) for large q2,

• a reliable method to extrapolate the form factor f+(q2) to all q2 region,

We exploit the dispersive bound for extrapolation.
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Review of the dispersive bound

An exact bound on the form factors at f0(q2), f+(q2) for arbitrary q2, which can be derived

from OPE and dispersion relations for the 2pt functions of vector current V µ (b̄u). If we know

the form factor values f0(q), f+(q) for several points q2 = q2
J (J = 1, · · · , L), we can further

restrict the bound as

F
lo
(q

2
; ~f) ≤ f(t) ≤ F

up
(q

2
; ~f) (4)

where F up/lo(q2, ~f) are solutions of quadratic equations whose coefficents are are known

functions of
(1) kinematical paremeters : q2.mB,m∗

B,mπ,

(2) OPE parameters: Wilson coefficients and vacuum condensates.

(3) nonperturbative inputs:inputs {q2
J}, f0,+(q2

J) (J = 1, · · · , L).
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Figure 1: bound of f+(t), f0(−t) for one example set of inputs ~f without and with the

kinematical constraint f+(0) = f0(0)

Strong model independent bound if lattice inputs have no errors.
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Lattice inputs f(q2
1), · · · f(q2

L) have errors.

⇒ Statistical treatment, L. Lellouch,Nucl. Phys. B 479, 353 (1996)

• Probability distribution Pinitial of the dispersive bound is obtained from a random Gaussian

samples based on lattice results ( and errors ).

• The following consistency conditions are imposed, which makes it a conditional distribution

PcondA .

Condition A

· The quadratic equations to determine the upper/lower bounds

should have real solutions.

· The solutions of the upper/lower bounds should allow

the kinematical condition f+(0) = f0(0).
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at 90%,66%, 30% confidence levels.
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Use of global q2 dependence

We use the following physical condition with experimental data to reweight the probability

distribution to make a new conditional distribution PcondA+B .

Condition B

The experimental data Γexp
i ’s should lie within

the upper and lower bounds from the theory simultaneously for all i , i.e.

|Vub|2γlo
i < Γexp

i < |Vub|2γup
i (i=1, · · · , Nbin),

where γ
up/lo
i

(~f) ≡ G2

192π3m3
B

R
q2
i+1

q2
i

dt

˛

˛

˛

˛

F+
up/lo

(t; ~f+, ~f0)

˛

˛

˛

˛

2
λ(q2)3/2,
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Setup

Lattice form factors

(quenched JLQCD lattice data+soft pion

theorem),

S. Aoki et al., Phys. Rev.D 64 (2001) 114505.

q2 f+(q2) f0(q2)

17.79 1.03 ± 0.22 0.407 ± 0.092
19.30 1.24 ± 0.21 0.45 ± 0.11

20.82 1.54 ± 0.27 0.51 ± 0.14

q2
max ∼ fB

fπ

ĝb
1−q2/m2

B∗
fB/fπ

fB = 190 ± 30 MeV, (Gaussian)

fB∗ = 190 ± 30 MeV (Gaussian)

g = [0.3, 0.9] (uniform). O(107) samples are

created.

Experimental branching fraction (CLEO data),

S. B.Anthar et al., Phys. Rev.D 68 (2003) 072003.

B(0 < q2 < 8GeV2) 0.43 ± 0.11

B(8 < q2 < 16GeV2) 0.65 ± 0.11

B(16 < q2 < q2
maxGeV2) 0.25 ± 0.09

2000 samples for Γi ≡ ΓtotBi .(Gaussian)

|Vub|: 2000 samples for |Vub| which uniformly

distributes over [1.0, 6.0] × 10−3.
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Results

0.0 5.0 10.0 15.0 20.0 25.0

q
2
(GeV

2
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
r(

q
0

2
<

q
2
<

q
1

2
) 

x
1

0
4

Branching fraction Bi ≡
Z q2

i+1

q2
i

dΓ
dq2

Γtotal

by CLEO experiment for q2
0,q2

1,q2
2,q2

3 =

0, 8, 16 GeV2, q2
max.

0 5 10 15 20 25

q
2
(GeV

2
)

0.0

0.5

1.0

1.5

B
r(

q
2

0
<

q
2
<

q
2

1
)X

1
0

4
��
��
��
��
��
��
��
��
��
�

Upper and ower bounds of
Z q2

i+1

q2
i

dΓ

dq2

obtained by the dispersive bound from

three different sample lattice inputs

using JLQCD data. (red and black are

highly unlikely statistically.)

15



M. Fukunaga and T. Onogi |Vub| determination

−25 −15 −5 5 15 25

q
2

0

1

2

f+
 o

r 
f0

30%CL bound

66% CL bound

95% CLbound

Figure 2: CLB for f0,+(q2) with JLQCD’s

lattice input, and CLEO’s experimental data

Results with JLQCD inputs

• |Vub| = (3.73 ± 0.53) × 10−3

• 0.126 < f(0) < 0.293 (66% CL)
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Discussions

Comparison with analysis without dispersive bounds.
JLQCD, CLEO and PDG:

Z q2
max

q2=16GeV 2
dq2dΓ(B → πlν)

dq2
|JLQCD = |Vub|2(1.71 ± 0.61 ± 0.12 ± 0.44)(psec

−1)

B(q2 > 16GeV 2)CLEO = 0.25 ± 0.09

τ
B0|PDG = 1.546 ± 0.029(psec)

⇒ |Vub| = (3.08 ± 0.88) × 10−3. ( c.f. |Vub| = (3.73 ± 0.53) × 10−3 from dispersive bound. )

• Errors are smaller with dispersive bound.

• Central value is changed.
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|Vtd|/|Vts| : Grinstein ratio
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Chiral behavior of fB, fD

Partially quenched chiral perturbation theory (Sharpe and Zhang Phys. Rev. D53 (1996) 5125.)

(Φ) = κ[1 + (∆fQq) + C1mq + · · ·]

where

(∆fQq) = −(1 + 3g2)

(4πf)2
[
3

4
m

2
qq ln(

m2
qq

Λ2
)]

fBd
: Chiral extrapolation with log term is necessary.

g is the B∗Bπ coupling, where recent CLEO experiments suggests g = 0.59 ± 0.01 ± 0.07.

A. Anastassov et al. (CLEO collab.), Phys. Rev. D67 (2003) 032003.
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Grinstein ratio

Ginstein considered the ratio R1 which is close to unity.

R1 =
fBs

fBd

/
fDs

fDd

.

(C. G. Boyd, B. Grinstein, Nucl. Phys. B 442 (1995) 205.)

In this combination, systematic errors in the chiral extrapolation are expected to cancel in the

B/D ratio partially up to corrections proportional to (ms − md)/(1/MD − 1/MB) .

Other systematic errors are expected to cancel in the SU(3) ratio.
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Estimate of R1 − 1 from chiral perturbation theory

M.Booth, hep-ph/9412228

(C.f. S.Sharpe and Y. Zhang, PRG53(1996)5125, M.Booth, PRD51(1995)2338)

In Nf = 2 case, numerically,

R1 − 1 = 0.17g2 − 0.15GeV −1g(g1 − g2)

= 0.028 ∼ 0.087

for a range of values of parameters, where g is B∗Bπ coupling and g1, g2 are coeffs. of 1/M

correction to B∗Bπ coupling. Consevative estimate of error of R1 is 5%, however,

• Some of the correction terms are neglected in the calculations.

• The true values of coefficients are not known.

Therefore, we do not know how to reduce the theoretical errors of chiral perturbation theory for

R1 any further.
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Lattice Setup

Heavy quark : clover (Fermilab formalism)

Light quark : clover

Gauge : standard Wilson (nf = 2 unquenched calculation)

• Both the B and D meson can be covered.

• B/D ratio can be taken.

Parameters for the simulation

nf = 2, 203 × 48 lattices at β = 5.2, csw = 2.02. 5 light sea quark masses (κl).

8 heavy quark masses (κh) correspondings to each sea quark masses.
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Our unquenched lattice results for the Grinstein ratio
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Systematic errors

1. Chiral extrapolation

Estimated by comparing different fitting functions. ∼ 0.4% ( c.f. previous graph )

2. Discretization errors

Leading error of O((ap)2) cancells in the ratio.

Remaing dominant error is O((ap)2(ms−md)(1/mc −1/mb)), which gives 0.6% by naive

order estimation.

3. Perturbative errors

Leading error of O(α2) cancells in the ratio.

Remaing dominant error is O(αams) which gives 0.7% by naive order estimation.

4. Uncertainty in the strange quark mass

Estimated by comparing result of κs2
with that of κs1

, which gives negligible errors ∼ 0.2%
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Results

JLQCD preliminary results for the Grinstein ratio R1 ≡ fBs

fBd

/
fDs

fDd

R1 = 1.02 ±0.01 ±0.01

stat. chiral ext., disc.,pert.,κs

Grinstein ratio is a useful quantity for the determination of CKM elements |Vts|/|Vtd| from

TeVatron and CLEO-c experimental data. Lattice QCD can provide the value of R1 more

precisely than the chiral perturbation theory.

CLEO-c plans to measure fDs, fDd
with 2% accuracy.

⇒ (fBs/fBd
) = (

fBs

fBd

/
fDs

fDd

) × (fDs/fDd
)CLEO−c
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Summary

• The determination of |Vub| suffers from the limited kinematical region in lattice calculation as

well as large statistical and systematic errors.

• Using perturbative QCD and dispersive bounds we can improve the accuracy |Vub.

• The determination of |Vtd|/|Vts| suffers from large errors from the chiral extrapolation.

• Using the Grinstein ratio we can extract |Vtd|/|Vts| more precisely owing to the approximate

heavy quark symmetry and the SU(3) flavor symmetry.

• In both cases, more precise experimental data will help.

B → πlν spectrum from B factories. D meson decay constants from charm factories.
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Backup Slides
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The dispersive bound

Consider the vacuum polarization function with ub current V µν ≡ ūγµb given by,

Πµν = i
R

d4xeiqx〈0|T [V µ(x)V ν†(0)]|0〉 = −(gµνq2 − qµqν)ΠT(q2) + qµνΠL(q2).

transverse part longditudinal part

From the optical theorem, the imaginary part can be expressed by the sum of all the intermidiate

hadronic states.

ImΠµν(q) =
1

2

X

Γ

(2π)4δ4(q − pΓ)〈0|V µ|Γ〉〈Γ|V ν†|0〉, (5)

where |Γ〉 denotes B∗, Bπ and all possible hadron states created by V µ.

L.H.S. is calculable by PQCD if q is far from the resoncance, R.H.S contains 〈0|V µ|Bπ〉 .
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Cauchy’s theorem for complex functions

Z

C

dz

2πi

f(z)

(z − a)2
= f

′
(a)

χ(Q
2
) ≡ d

dt
(tΠ(t))|

t=−Q2 =

Z

C1

dt

2πi

tΠ(t)

(t + Q2)2
+

Z

C2

dt

2πi

tΠ(t)

(t + Q2)2
+

Z

C3

dt

2πi

tΠ(t)

(t + Q2)2

=

Z ∞

0

dt

π

tImΠ(t)

(t + Q2)2
· · · once subtracted dispersion relation

-Q
2

C
1

C
2

C
3

><

<

χ(Q2) is calculable by PQCD if −Q2 is far

from the resonance.

This equation holds for ΠL and ΠT .
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Since all the states give positive contributions, if we just take |B∗〉, |Bπ〉 states and drop

all the excited states, we obtain an EXACT INEQUALITY

ImΠL(t) ≥ 3

2

t+t−

16π

q

(t − t+)(t − t−)
|f0(t)|2

t3
θ(t − t+)

ImΠL(t) ≥ π(
mB∗

fB∗
)
2
δ(t − mB∗) +

3

2

t+t−

48π
[(t − t+)(t − t−)]

3/2|f+(t)|2

t3
θ(t − t+),

where t ≡ q2, t± ≡ (mB ± mπ)
2. Using the dispersion relatoins we obtain,

χL(Q2) ≥ 1

π

Z ∞

t+

k0
L(t, Q2)|f0(t)|2 (6)

χT(Q
2
) ≥ (

mB∗

fB∗
)
2
+

1

π

Z ∞

t+

k
+
L(t, Q

2
)|f+

(t)|2 (7)

Both equations can be written in the form as J(Q2) >
1

π

Z ∞

t+

k+(t, Q2)|f(t)|2
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Making the change of variables as t → z where
1 + z

1 − z
=

s

t+ − t

t+ − t−
,

J(Q
2
) ≥

Z

|z|=1

dz

2πiz
|φ(z, Q

2
)f(z)|2 = 〈φf |φf〉 (8)

where we defined the innerprodcut as 〈g|h〉 =

Z

|z=1|

dz

2πiz
g(z)h(z)

The function gt(z) ≡ 1

1 − z(t)z
can be used to extract the form factor at z(t) as

〈gt|φf〉 = φ(z(t), Q
2
)f(t) (9)

φ(z, Q2) =

r

2t+t−
4π

1

t+ − t−

1 + z

(1 − z)5/2
(β(0) +

1 + z

1 − z
)−2(β(−Q2) +

1 + z

1 − z
)−2, (10)

where β =
p

(t+ − t)/(t+ − t−).
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Perturbative QCD results

χL(Q2) =
1

πm2
b

Z 1

0
dx

(m2
b/x)ImΠ

pert
L

(x)

(1 + (Q2/m2
b
)x)2

+
mb〈ūu〉1GeV

(Q2 + m2
b
)2

+
1

(Q2 + m2
b
)2

〈 αs

12π
G2〉,

χT (Q
2
) =

1

πm2
b

Z 1

0
dx

(m2
b/x)ImΠ

pert
T (x)

(1 + (Q2/m2
b
)x)3

+
mb〈ūu〉1GeV

(Q2 + m2
b
)3

+
1

(Q2 + m2
b
)3

〈 αs

12π
G

2〉,

where

ImΠ
pert
L

(x) =
3

8π
x(1 − x)2[1 + O(α∫ )],

ImΠ
pert
T (x) =

1

8π
(1 − x)

2
[(2 + x) + O(α∫ )],

1-loop results by L. J. Reinders et al., Phys. Lett. B 334 (1994) 175.

χL(Q
2

= 0GeV
2
) = 1.5 × 10

−2
, χT (Q

2
= 0GeV

2
) = 5.6 × 10

−4
.at 1-loop,

where mb = 4.3 GeV, 〈ūu〉1GeV = (−0.24GeV )3, 〈αs
π G2〉 = 0.02(1)GeV 4, are used.

Scheme dependence is tiny (perturbative correction is undercontrol).

Power corrections from condensates are tiny.
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