## 格子QCDによる $\left|V_{u b}\right|,\left|V_{t s}\right| /\left|V_{t d}\right|$ の決定

大野木 哲也（京大基研）
March 8，2005，Tsukuba
－JLQCD collaboration との共同研究：
Nucl．Phys．Proc．Suppl．119， 610 （2003），
Phys．Rev．Lett．91， 212001 （2003），
Phys．Rev．D 64， 114505 （2001），
－福永優（広大）との共同研究：
Phys．Rev．D 71， 034506 （2005）．

## Introduction

Over-constraining the CKM elements through independent processes can probe possible signals of new physics beyond the standard model.


Role of $\left|V_{u b}\right|$ and $\left|V_{t s} / V_{t d}\right|$
$\left|V_{u b}\right|$ : Consistency check with $\phi_{1}$ measurement.
$\left|V_{t d}\right|$ : FCNC contribution from new physics.
Consistency check with $\phi_{3}$ measurement.

Determination of $\left|V_{u b}\right|$ from $B \rightarrow \pi l \nu$

$$
\begin{gather*}
\langle\pi(k)| \bar{q} \gamma^{\mu} b|B(p)\rangle=f^{+}\left(q^{2}\right)\left[(p+k)^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f^{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}  \tag{1}\\
\frac{d \Gamma(B \rightarrow \pi l \nu)}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left[(v \cdot k)^{2}-m_{\pi}^{2}\right]^{3 / 2}\left|f^{+}\left(q^{2}\right)\right|^{2} \tag{2}
\end{gather*}
$$

- Lattice cacuclation is possible only for high $q^{2}\left(>16 \mathrm{GeV}^{2}\right)$ region.
- Experimental data is phase space suppressed for high $q^{2}$ region.
- Statistical error is larger for form factors than simpler matrix elements.
- Chiral extrapolation error also exists.


Determination of $\left|V_{t d}\right|$ and $\left|V_{t s}\right|$ from $B \bar{B}$ mixing

$$
\Delta M_{B_{d(s)}} \propto\left|V_{t d(s)}\right|^{2} f_{B_{d(s)}}^{2} B_{B_{d(s)}}
$$

- $\Delta M_{B_{d(s)}}$ will be measured at Belle, Babar, the TeVatron with $2 \%$ accuracy.
- Precise lattice determination of $f_{B}, B_{B}, \xi \equiv \frac{f_{B_{s}} B_{B_{s}}^{1 / 2}}{f_{B_{d}} B_{B_{d}}^{1 / 2}}$ are indispensable.
- Large chiral extrapolation error ... chiral $\log \sim 10 \%$
C.f. N. Yamada's talk at lattice 2001.
A. S. Kronfeld and S. M. Ryan Phys. Lett. B 543, 59 (2002).
S. Aoki et al. hep-lat/0307039 .

Unquenched lattice results on the decay constants $\Phi \equiv f_{H L} \sqrt{M_{H L}}$.

$f_{B_{d}}=191(10)\left({ }_{-22}^{+12}\right) \mathrm{MeV}, f_{B_{s}}=215(9)\left({ }_{-13}^{+14}\right) \mathrm{MeV}$, and $f_{B_{s}} / f_{B_{d}}=1.13(3)\binom{+13}{-2}$, $f_{B_{d}} \sqrt{\hat{B}_{B_{d}}}=215(11)\left({ }_{-27}^{+15}\right) \mathrm{MeV}, f_{B_{s}} \sqrt{\hat{B}_{B_{s}}}=245(10)\left({ }_{-17}^{+19}\right) \mathrm{MeV}$, and $\xi=1.14(3)\left({ }_{-2}^{+13}\right)$.

## Goal

Propose a method to improve the accuracy of $\left|V_{u b}\right|$ and $\left|V_{t d} /\left|V_{t s}\right|\right.$ determination using a feasible lattice QCD calculation .

- $\left|V_{u b}\right|$ : a new method for the dispersive bound.
- $\left|V_{t d}\right| /\left|V_{t s}\right|$ : lattice estimate of the Grinstein ratio


## $\left|V_{u b}\right|$ : the dispersive bound.

## Basic Idea

The differential decay rate is written as

$$
\begin{equation*}
\frac{d \Gamma(B \rightarrow \pi l \nu)}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left[(v \cdot k)^{2}-m_{\pi}^{2}\right]^{3 / 2}\left|f^{+}\left(q^{2}\right)\right|^{2} \tag{3}
\end{equation*}
$$

In order to detemine $\left|V_{u b}\right|$ using data for all $q^{2}$ region, we need to have

- $\Gamma_{i}=\int_{q_{i}^{2}}^{q_{i+1}^{2}} d q^{2} \frac{d \Gamma}{d q^{2}}$ from experiment $\left(i=1, \cdots, N_{b i n}\right)$,
- lattice results $f^{+}\left(q_{J}^{2}\right)(J=1, \cdots, L)$ for large $q^{2}$,
- a reliable method to extrapolate the form factor $f^{+}\left(q^{2}\right)$ to all $q^{2}$ region,

We exploit the dispersive bound for extrapolation.

Review of the dispersive bound

An exact bound on the form factors at $f^{0}\left(q^{2}\right), f^{+}\left(q^{2}\right)$ for arbitrary $q^{2}$, which can be derived from OPE and dispersion relations for the 2 pt functions of vector current $V^{\mu}(\bar{b} u)$. If we know the form factor values $f^{0}(q), f^{+}(q)$ for several points $q^{2}=q_{J}^{2}(J=1, \cdots, L)$, we can further restrict the bound as

$$
\begin{equation*}
F^{l o}\left(q^{2} ; \vec{f}\right) \leq f(t) \leq F^{u p}\left(q^{2} ; \vec{f}\right) \tag{4}
\end{equation*}
$$

where $F^{u p / l o}\left(q^{2}, \vec{f}\right)$ are solutions of quadratic equations whose coefficents are are known functions of
(1) kinematical paremeters : $q^{2} \cdot m_{B}, m_{B}^{*}, m_{\pi}$,
(2) OPE parameters:

Wilson coefficients and vacuum condensates.
(3) nonperturbative inputs:inputs $\left\{q_{J}^{2}\right\}, f^{0,+}\left(q_{J}^{2}\right)(J=1, \cdots, L)$.



Figure 1: bound of $f^{+}(t), f^{0}(-t)$ for one example set of inputs $\vec{f}$ without and with the kinematical constraint $f^{+}(0)=f^{0}(0)$

Strong model independent bound if lattice inputs have no errors.

Lattice inputs $f\left(q_{1}^{2}\right), \cdots f\left(q_{L}^{2}\right)$ have errors.
$\Rightarrow$ Statistical treatment, L. Lellouch,Nucl. Phys. B 479, 353 (1996)

- Probability distribution $\mathcal{P}_{\text {initial }}$ of the dispersive bound is obtained from a random Gaussian samples based on lattice results ( and errors ).
- The following consistency conditions are imposed, which makes it a conditional distribution $\mathcal{P}_{\text {condA }}$.


## Condition A

- The quadratic equations to determine the upper/lower bounds should have real solutions.
- The solutions of the upper/lower bounds should allow the kinematical condition $f^{+}(0)=f^{0}(0)$.


Model independent bounds on $f^{0,+}\left(q^{2}\right)$ at $90 \%, 66 \%, 30 \%$ confidence levels.

## Use of global $q^{2}$ dependence

We use the following physical condition with experimental data to reweight the probability distribution to make a new conditional distribution $\mathcal{P}_{\text {cond } A+B}$.

## Condition B

The experimental data $\Gamma_{i}^{\text {exp }}$ s should lie within the upper and lower bounds from the theory simultaneously for all $i$, i.e.

$$
\left|V_{u b}\right|^{2} \gamma_{i}^{l o}<\Gamma_{i}^{e x p}<\left|V_{u b}\right|^{2} \gamma_{i}^{u p}\left(\mathrm{i}=1, \cdots, N_{b i n}\right),
$$

where $\left.\left.\gamma_{i}^{u p / l o}(\vec{f}) \equiv \frac{G^{2}}{192 \pi^{3} m_{B}^{3}} \int_{q_{i}^{2}}^{q_{i+1}^{2}} d t\right|_{F_{u p / l o}^{+}\left(t ; \vec{f}^{+}, \vec{f}^{0}\right)}\right|^{2} \lambda\left(q^{2}\right)^{3 / 2}$,

## Setup

Lattice form factors
(quenched JLQCD lattice data+soft pion theorem),
S. Aoki et al., Phys. Rev.D 64 (2001) 114505.

| $q^{2}$ | $f^{+}\left(q^{2}\right)$ | $f^{0}\left(q^{2}\right)$ |
| :--- | :--- | :--- |
| 17.79 | $1.03 \pm 0.22$ | $0.407 \pm 0.092$ |
| 19.30 | $1.24 \pm 0.21$ | $0.45 \pm 0.11$ |
| 20.82 | $1.54 \pm 0.27$ | $0.51 \pm 0.14$ |
| $q_{\max }^{2}$ | $\sim \frac{f_{B}}{f_{\pi}} \frac{\hat{g}_{b}}{1-q^{2} / m_{B^{*}}^{2}}$ | $f_{B} / f_{\pi}$ |

$f_{B}=190 \pm 30 \mathrm{MeV}$, (Gaussian)
$f_{B^{*}}=190 \pm 30 \mathrm{MeV}$ (Gaussian)
Experimental branching fraction (CLEO data), S. B.Anthar et al., Phys. Rev.D 68 (2003) 072003.
$g=[0.3,0.9]$ (uniform). $O\left(10^{7}\right)$ samples are created.

## Results



Branching fraction $B_{i} \equiv \int_{q_{i}^{2}}^{q_{i+1}^{2}} \frac{\frac{d \Gamma}{d q^{2}}}{\Gamma_{\text {total }}}$ Upper and ower bounds of $\int_{q_{i}^{2}}^{q_{i}} \frac{d \Gamma}{d q^{2}}$ by CLEO experiment for $q_{0}^{2}, q_{1}^{2}, q_{2}^{2}, q_{3}^{2}=$ three different sample lattice inputs $0,8,16 \mathrm{GeV}^{2}, q_{\text {max }}^{2}$.


Upper and ower bounds of $\int_{q_{i}^{2}}^{q_{i+1}^{2}} \frac{d \Gamma}{d q^{2}}$ using JLQCD data. (red and black are highly unlikely statistically.)


Results with JLQCD inputs

- $\left|V_{u b}\right|=(3.73 \pm 0.53) \times 10^{-3}$
- $0.126<f(0)<0.293(66 \% C L)$

Figure 2: CLB for $f^{0,+}\left(q^{2}\right)$ with JLQCD's lattice input, and CLEO's experimental data

## Discussions

Comparison with analysis without dispersive bounds. JLQCD, CLEO and PDG:

$$
\begin{aligned}
\int_{q^{2}=16 G e V^{2}}^{\left.q_{\max }^{2} d q^{2} \frac{d \Gamma(B \rightarrow \pi l \nu)}{d q^{2}}\right|_{J L Q C D}} & =\left|V_{u b}\right|^{2}(1.71 \pm 0.61 \pm 0.12 \pm 0.44)\left(\mathrm{psec}^{-1}\right) \\
B\left(q^{2}>16 G e V^{2}\right)_{C L E O} & =0.25 \pm 0.09 \\
\left.\tau_{B^{0}}\right|_{P D G} & =1.546 \pm 0.029(\mathrm{psec}) \\
\Rightarrow\left|V_{u b}\right|=(3.08 \pm 0.88) \times 10^{-3} .\left(\text { c.f. }\left|V_{u b}\right|\right. & \left.=(3.73 \pm 0.53) \times 10^{-3} \text { from dispersive bound. }\right)
\end{aligned}
$$

- Errors are smaller with dispersive bound.
- Central value is changed.


## $\left|V_{t d}\right| /\left|V_{t s}\right|$ : Grinstein ratio

Chiral behavior of $f_{B}, f_{D}$
Partially quenched chiral perturbation theory (Sharpe and Zhang Phys. Rev. D53 (1996) 5125.)

$$
(\Phi)=\kappa\left[1+\left(\Delta f_{\mathrm{Qq}}\right)+C_{1} m_{\mathrm{q}}+\cdots \cdot\right]
$$

where

$$
\left(\Delta f_{\mathrm{Qq}}\right)=-\frac{\left(1+3 g^{2}\right)}{(4 \pi f)^{2}}\left[\frac{3}{4} m_{\mathrm{qq}}^{2} \ln \left(\frac{m_{\mathrm{qq}}^{2}}{\Lambda^{2}}\right)\right]
$$

$f_{B_{d}}$ : Chiral extrapolation with log term is necessary. $g$ is the $B^{*} B \pi$ coupling, where recent CLEO experiments suggests $g=0.59 \pm 0.01 \pm 0.07$. A. Anastassov et al. (CLEO collab.), Phys. Rev. D67 (2003) 032003.

## Grinstein ratio

Ginstein considered the ratio $R_{1}$ which is close to unity.

$$
R_{1}=\frac{f_{B_{s}}}{f_{B_{d}}} / \frac{f_{D_{s}}}{f_{D_{d}}}
$$

(C. G. Boyd, B. Grinstein, Nucl. Phys. B 442 (1995) 205.)

In this combination, systematic errors in the chiral extrapolation are expected to cancel in the $\mathrm{B} / \mathrm{D}$ ratio partially up to corrections proportional to $\left(m_{s}-m_{d}\right) /\left(1 / M_{D}-1 / M_{B}\right)$. Other systematic errors are expected to cancel in the $\mathrm{SU}(3)$ ratio.

## Estimate of $R_{1}-1$ from chiral perturbation theory

M. Booth, hep-ph/9412228
(C.f. S.Sharpe and Y. Zhang, PRG53(1996)5125, M.Booth, PRD51(1995)2338)

In $N_{f}=2$ case, numerically,

$$
\begin{aligned}
R_{1}-1 & =0.17 g^{2}-0.15 \mathrm{GeV}^{-1} g\left(g_{1}-g_{2}\right) \\
& =0.028 \sim 0.087
\end{aligned}
$$

for a range of values of parameters, where $g$ is $B^{*} B \pi$ coupling and $g_{1}, g_{2}$ are coeffs. of $1 / \mathrm{M}$ correction to $B^{*} B \pi$ coupling. Consevative estimate of error of $R_{1}$ is $5 \%$, however,

- Some of the correction terms are neglected in the calculations.
- The true values of coefficients are not known.

Therefore, we do not know how to reduce the theoretical errors of chiral perturbation theory for $R_{1}$ any further.

## Lattice Setup

Heavy quark : clover (Fermilab formalism)
Light quark : clover
Gauge : standard Wilson $\left(n_{f}=2\right.$ unquenched calculation)

- Both the $B$ and $D$ meson can be covered.
- B/D ratio can be taken.


## Parameters for the simulation

$n_{f}=2,20^{3} \times 48$ lattices at $\beta=5.2, c_{s w}=2.02 .5$ light sea quark masses $\left(\kappa_{l}\right)$. 8 heavy quark masses ( $\kappa_{h}$ ) correspondings to each sea quark masses.

Our unquenched lattice results for the Grinstein ratio


Sea quark mass dependence of the Grinstein ratio $\left(\Phi_{B_{s}} / \Phi_{B_{d}}\right) /\left(\Phi_{D_{s}} / \Phi_{D_{d}}\right)$ in $r_{0}$ unit. The chiral extrapolation error is suppressed to $2 \%$ level.

## Systematic errors

1. Chiral extrapolation

Estimated by comparing different fitting functions. $\sim 0.4 \%$ (c.f. previous graph )
2. Discretization errors

Leading error of $O\left((a p)^{2}\right)$ cancells in the ratio.
Remaing dominant error is $O\left((a p)^{2}\left(m_{s}-m_{d}\right)\left(1 / m_{c}-1 / m_{b}\right)\right)$, which gives $0.6 \%$ by naive order estimation.
3. Perturbative errors

Leading error of $O\left(\alpha^{2}\right)$ cancells in the ratio.
Remaing dominant error is $O\left(\alpha a m_{s}\right)$ which gives $0.7 \%$ by naive order estimation.
4. Uncertainty in the strange quark mass

Estimated by comparing result of $\kappa_{s_{2}}$ with that of $\kappa_{s_{1}}$, which gives negligible errors $\sim 0.2 \%$

## Results

JLQCD preliminary results for the Grinstein ratio $R_{1} \equiv \frac{f_{B_{s}}}{f_{B_{d}}} / \frac{f_{D_{s}}}{f_{D_{d}}}$

$$
\begin{array}{llll}
R_{1}=1.02 & \begin{array}{ll} 
\pm 0.01 \\
\text { stat. }
\end{array} & \begin{array}{l} 
\pm 0.01 \\
\text { chiral ext., disc.,pert., } \kappa_{s}
\end{array}
\end{array}
$$

Grinstein ratio is a useful quantity for the determination of CKM elements $\left|V_{t s}\right| /\left|V_{t d}\right|$ from TeVatron and CLEO-c experimental data. Lattice QCD can provide the value of $R_{1}$ more precisely than the chiral perturbation theory.

CLEO-c plans to measure $f_{D_{s}}, f_{D_{d}}$ with $2 \%$ accuracy.

$$
\Rightarrow\left(f_{B_{s}} / f_{B_{d}}\right)=\left(\frac{f_{B_{s}}}{f_{B_{d}}} / \frac{f_{D_{s}}}{f_{D_{d}}}\right) \times\left(f_{D_{s}} / f_{D_{d}}\right)^{C L E O-c}
$$

## Summary

- The determination of $\left|V_{u b}\right|$ suffers from the limited kinematical region in lattice calculation as well as large statistical and systematic errors.
- Using perturbative QCD and dispersive bounds we can improve the accuracy $\mid V_{u b}$.
- The determination of $\left|V_{t d}\right| /\left|V_{t s}\right|$ suffers from large errors from the chiral extrapolation.
- Using the Grinstein ratio we can extract $\left|V_{t d}\right| /\left|V_{t s}\right|$ more precisely owing to the approximate heavy quark symmetry and the $\operatorname{SU}(3)$ flavor symmetry.
- In both cases, more precise experimental data will help. $B \rightarrow \pi l \nu$ spectrum from B factories. $D$ meson decay constants from charm factories.


## Backup Slides

## The dispersive bound

Consider the vacuum polarization function with ub current $V^{\mu \nu} \equiv \bar{u} \gamma^{\mu} b$ given by,

$$
\Pi^{\mu \nu}=i \int d^{4} x e^{i q x}\langle 0| T\left[V^{\mu}(x) V^{\nu \dagger}(0)\right]|0\rangle=-\left(g^{\mu \nu} q^{2}-q^{\mu} q^{\nu}\right) \Pi_{T}\left(q^{2}\right)+q^{\mu \nu} \Pi_{L}\left(q^{2}\right) .
$$

From the optical theorem, the imaginary part can be expressed by the sum of all the intermidiate hadronic states.

$$
\begin{equation*}
\operatorname{Im} \Pi^{\mu \nu}(q)=\frac{1}{2} \sum_{\Gamma}(2 \pi)^{4} \delta^{4}\left(q-p_{\Gamma}\right)\langle 0| V^{\mu}|\Gamma\rangle\langle\Gamma| V^{\nu^{\dagger}}|0\rangle, \tag{5}
\end{equation*}
$$

where $|\Gamma\rangle$ denotes $B^{*}, B \pi$ and all possible hadron states created by $V^{\mu}$. L.H.S. is calculable by PQCD if q is far from the resoncance, R.H.S contains $\langle 0| V^{\mu}|B \pi\rangle$.

Cauchy's theorem for complex functions $\int_{C} \frac{d z}{2 \pi i} \frac{f(z)}{(z-a)^{2}}=f^{\prime}(a)$

$$
\begin{aligned}
\chi\left(Q^{2}\right) & \left.\equiv \frac{d}{d t}(t \Pi(t))\right|_{t=-Q^{2}}=\int_{C_{1}} \frac{d t}{2 \pi i} \frac{t \Pi(t)}{\left(t+Q^{2}\right)^{2}}+\int_{C_{2}} \frac{d t}{2 \pi i} \frac{t \Pi(t)}{\left(t+Q^{2}\right)^{2}}+\int_{C_{3}} \frac{d t}{2 \pi i} \frac{t \Pi(t)}{\left(t+Q^{2}\right)^{2}} \\
& =\int_{0}^{\infty} \frac{d t}{\pi} \frac{t \operatorname{lm} \Pi(t)}{\left(t+Q^{2}\right)^{2}} \cdots \text { once subtracted dispersion relation } \\
& \begin{array}{l}
\chi\left(Q^{2}\right) \text { is calculable by PQCD if }-Q^{2} \text { is far } \\
C_{3} \\
\begin{array}{l}
\text { from the resonance. } \\
\text { This equation holds for } \Pi_{L} \text { and } \Pi_{T} .
\end{array}
\end{array} .
\end{aligned}
$$



Since all the states give positive contributions, if we just take $\left|B^{*}\right\rangle,|B \pi\rangle$ states and drop all the excited states, we obtain an EXACT INEQUALITY

$$
\begin{aligned}
\operatorname{Im} \Pi_{L}(t) & \geq \frac{3}{2} \frac{t_{+} t_{-}}{16 \pi} \sqrt{\left(t-t_{+}\right)\left(t-t_{-}\right)} \frac{\left|f^{0}(t)\right|^{2}}{t^{3}} \theta\left(t-t_{+}\right) \\
\operatorname{Im} \Pi_{L}(t) & \geq \pi\left(\frac{m_{B^{*}}}{f_{B^{*}}}\right)^{2} \delta\left(t-m_{B^{*}}\right)+\frac{3}{2} \frac{t_{+} t_{-}}{48 \pi}\left[\left(t-t_{+}\right)\left(t-t_{-}\right)\right]^{3 / 2} \frac{\left|f^{+}(t)\right|^{2}}{t^{3}} \theta\left(t-t_{+}\right)
\end{aligned}
$$

where $t \equiv q^{2}, t_{ \pm} \equiv\left(m_{B} \pm m_{\pi}\right)^{2}$. Using the dispersion relatoins we obtain,

$$
\begin{align*}
\chi_{L}\left(Q^{2}\right) & \geq \frac{1}{\pi} \int_{t_{+}}^{\infty} k_{L}^{0}\left(t, Q^{2}\right)\left|f^{0}(t)\right|^{2}  \tag{6}\\
\chi_{T}\left(Q^{2}\right) & \geq\left(\frac{m_{B^{*}}}{f_{B^{*}}}\right)^{2}+\frac{1}{\pi} \int_{t_{+}}^{\infty} k_{L}^{+}\left(t, Q^{2}\right)\left|f^{+}(t)\right|^{2} \tag{7}
\end{align*}
$$

Both equations can be written in the form as $J\left(Q^{2}\right)>\frac{1}{\pi} \int_{t_{+}}^{\infty} k^{+}\left(t, Q^{2}\right)|f(t)|^{2}$

Making the change of variables as $t \rightarrow z$ where $\frac{1+z}{1-z}=\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}$,

$$
\begin{equation*}
J\left(Q^{2}\right) \geq \int_{|z|=1} \frac{d z}{2 \pi i z}\left|\phi\left(z, Q^{2}\right) f(z)\right|^{2}=\langle\phi f \mid \phi f\rangle \tag{8}
\end{equation*}
$$

where we defined the innerprodcut as $\langle g \mid h\rangle=\int_{|z=1|} \frac{d z}{2 \pi i z} \overline{g(z)} h(z)$
The function $g_{t}(z) \equiv \frac{1}{1-\overline{z(t)} z}$ can be used to extract the form factor at $z(t)$ as

$$
\begin{gather*}
\left\langle g_{t} \mid \phi f\right\rangle=\phi\left(z(t), Q^{2}\right) f(t)  \tag{9}\\
\phi\left(z, Q^{2}\right)=\sqrt{\frac{2 t_{+} t_{-}}{4 \pi}} \frac{1}{t_{+}-t_{-}} \frac{1+z}{(1-z)^{5 / 2}}\left(\beta(0)+\frac{1+z}{1-z}\right)^{-2}\left(\beta\left(-Q^{2}\right)+\frac{1+z}{1-z}\right)^{-2}, \tag{10}
\end{gather*}
$$

where $\beta=\sqrt{\left(t_{+}-t\right) /\left(t_{+}-t_{-}\right)}$.

## Perturbative QCD results

$$
\begin{aligned}
& \chi_{L}\left(Q^{2}\right)=\frac{1}{\pi m_{b}^{2}} \int_{0}^{1} d x \frac{\left(m_{b}^{2} / x\right) I m \Pi_{L}^{p e r t}(x)}{\left(1+\left(Q^{2} / m_{b}^{2}\right) x\right)^{2}}+\frac{m_{b}\langle\bar{u} u\rangle_{1 G e V}}{\left(Q^{2}+m_{b}^{2}\right)^{2}}+\frac{1}{\left(Q^{2}+m_{b}^{2}\right)^{2}}\left\langle\frac{\alpha_{s}}{12 \pi} G^{2}\right\rangle, \\
& \chi_{T}\left(Q^{2}\right)=\frac{1}{\pi m_{b}^{2}} \int_{0}^{1} d x \frac{\left(m_{b}^{2} / x\right) I m \Pi_{T}^{p e r t}(x)}{\left(1+\left(Q^{2} / m_{b}^{2}\right) x\right)^{3}}+\frac{m_{b}\langle\bar{u} u\rangle_{1 G e V}}{\left(Q^{2}+m_{b}^{2}\right)^{3}}+\frac{1}{\left(Q^{2}+m_{b}^{2}\right)^{3}}\left\langle\frac{\alpha_{s}}{12 \pi} G^{2}\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{Im} \Pi_{L}^{p e r t}(x) & =\frac{3}{8 \pi} x(1-x)^{2}\left[1+\mathcal{O}\left(\alpha_{\rho}\right)\right] \\
\operatorname{Im} \Pi_{T}^{p e r t}(x) & =\frac{1}{8 \pi}(1-x)^{2}\left[(2+x)+\mathcal{O}\left(\alpha_{\rho}\right)\right]
\end{aligned}
$$

1-loop results by L. J. Reinders et al., Phys. Lett. B 334 (1994) 175.

$$
\chi_{L}\left(Q^{2}=0 \mathrm{GeV}^{2}\right)=1.5 \times 10^{-2}, \quad \chi_{T}\left(Q^{2}=0 \mathrm{GeV}^{2}\right)=5.6 \times 10^{-4} \text {.at 1-loop, }
$$

where $m_{b}=4.3 \mathrm{GeV},\langle\bar{u} u\rangle_{1 \mathrm{GeV}}=(-0.24 \mathrm{GeV})^{3},\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle=0.02(1) G e V^{4}$, are used.
Scheme dependence is tiny (perturbative correction is undercontrol).
Power corrections from condensates are tiny.

