

Belle 実験における *τ* 物理解析の現状

佐藤 功視 (名大理)

2005.03.07

科研費特定領域第三回研究会

- 「質量起源と超対称性物理の研究」
- ቃ Belle τ グループ
- KEKB 加速器/Belle 検出器
- 超対称模型とLFV
- ${\scriptstyle
 m \bullet} \ au
 ightarrow \ell \pi^0, \ell \eta, \ell \eta'$ 事象の探索
- その他の解析
- まとめ

- Lepton Flavor Violation (LFV) 事象の探索
 - $au
 ightarrow \ell \pi^0, \ell \eta, \ell \eta'$
 - $au
 ightarrow \ell\gamma$
 - $au o \ell K_S$
 - $au
 ightarrow 3\ell$
 - $au o \Lambda \pi$
- Ind class current の探索
 - $au o \pi \eta
 u$
 - $au o \pi \omega
 u \ (au o 3h \pi^0
 u)$
- Spectral Function の測定
 - $au o \pi \pi^0
 u$
- *ィ* EDM/MDM の測定

非対称エネルギー e^+e^- コライダー $\sqrt{s} = 10.58 \text{ GeV} : \Upsilon(4s) 共鳴上$ $\Rightarrow B ファクトリー$

世界最高のルミノシティ $L_{
m peak}=15.16~
m nb^{-1}/
m sec$ $\int_{
m day}L~dt=1082.8~
m pb^{-1}$ $\int_{
m total}L~dt=370.660~
m fb^{-1}$

〒 物理解析の現状, 2005.03.07 特定領域研究会@つくばエポカル − p.3/24

前方・後方非対称検出器

Lepton Flavor Violation (LFV): Lepton の香りの破れ

- 標準模型: Lepton Flavor は保存
 cf) ニュートリノ振動:中性 Lepton セクターでの LFV
- 超対称模型:(荷電 Lepton セクターにおける) LFV を予言

⇒ LFV の発見 = 標準模型を越える物理の発見 (超対称性?)

各 LFV mode の分岐比の大きさは模型の詳細に依存

• $au
ightarrow 3\ell, \, \ell\eta$ MSSM + Higgs mediated

Parameter によって $10^{-7} \sim 10^{-9}$ の分岐比を予言

→ Belle 実験の感度で到達可能な範囲!

- どの模型が正しいか?
- 模型の parameter space を制限

Large $\tan \beta (= \langle H_u \rangle / \langle H_d \rangle)$ at MSSM \Longrightarrow Higgs mediated process $\tau \rightarrow \mu \eta$ の崩壊分岐比が大きくなる

 $\mathcal{B}(\tau \to \mu \eta)$: $\mathcal{B}(\tau \to 3\mu)$: $\mathcal{B}(\tau \to \mu \gamma) = \mathbf{8}$: 1.5 : 1

$$Br(au o \mu\eta) = 0.84 imes 10^{-6} imes \left(rac{ aneta}{60}
ight)^6 \left(rac{100 {
m GeV}}{m_A}
ight)^4$$

M. Sher Phys.Rev.D66 05731(2002)

$$au
ightarrow \ell M^0 \ (\ell=e,\mu; \ M^0=\pi^0,\eta,\eta')$$
をまとめて探索

オ 物理解析の現状, 2005.03.07 特定領域研究会@つくばエポカル – p.6/24

〒 物理解析の現状, 2005.03.07 特定領域研究会@つくばエポカル − p.8/24

背景事象、信号事象の振る舞 $N \Rightarrow$ Monte Carlo simulation Bhabha, $\mu\mu$, two-photon, $q\bar{q}, \tau\tau$

+ : Data, _ : Signal MC, _ : BG MC _ : BG MC(*τ* 以外)

欠損質量 m_{miss} と欠損運動量 p_{miss} の情報を利用 ● 信号事象: 欠損運動量 = tag side の ν の運動量 ⇒ 欠損質量 ~ 0 ● 一般の $\tau\tau$ 事象: signal side と tag side の両方に ν を含む ⇒ p_{miss} - m_{miss} 分布に違い

黒: Signal MC 青: _{イイ} MC

 $\pi^0,\,\eta,\,\eta^\prime$ mass 分布 $(au o\mu M^0)$

+ : Data, _ : Signal MC, _ : BG MC _ : BG MC(*τ* 以外)

*〒*物理解析の現状, 2005.03.07 特定領域研究会@つくばエポカル – p.11/24

信号事象数: ΔE - M_{inv} 平面で評価 背景事象数の見積もりが終わるまで信号領域 (楕円領域) を隠しておく (Blind Analysis) Signal MC で分解能を評価して $\pm 5\sigma$ 領域を Blind.

信号領域における背景事象数 ← side band 領域のデータの分布から見積もる

予想した背景事象数と信号領域内に見つかった事象数は consistent ⇒ 信号事象は見つからなかった ⇒ 崩壊分岐比の上限値を設定

$$\mathcal{B} < rac{s_0}{2\epsilon \mathcal{B}_{M^0} N_{ au au}}$$

 ϵ : 信号検出効率 (4.70 \sim 8.51 %) $N_{\tau\tau} = 140M$: au pair の数 \mathcal{B}_{M^0} : π^0, η, η' 再構成 mode の崩壊分岐比 s_0 : 信号事象数の上限値 \Rightarrow Feldman-Cousins method で評価

さらに系統誤差を考慮: POLE (J. Conrad, et al., PRD012002 (2003)) *Preliminary Results* (まもなく論文投稿予定)

	CLEO	Belle	Belle/CLEO
Luminosity	4.7fb ⁻¹	154 fb $^{-1}$	33
検出効率 ϵ			
$\eta o \gamma \gamma$	7.2%	8.0%	
$\eta ightarrow 3\pi$	none	7.2%	1.7
N_{obs}	0	1	
U.L. of ${\cal B}~(imes~10^{-7})$	96	1.5	1/ <mark>64</mark>

- 33 倍もの統計を使いながらも効率的な事象選択により背景事象を 同レベルに押さえることに成功。
- $\eta \rightarrow 3\pi$ mode も解析することで検出効率を1.7 倍にまで改善

結果 $au
ightarrow \mu\eta$ の崩壊分岐比の上限値を 64 倍改善!

Baryon Number Violating mode (expected from GUT?) B - L conserving: (a) $\tau^- \rightarrow \Lambda \pi^-$: B – L violating $\tau^- \rightarrow \bar{\Lambda} \pi^-$: B - L conserving 0.2 0.2 vio. con. ΔE (GeV) ΔE (GeV) 0 Eff(%) 11.8 11.7 #(ev) in 5 5 -0.2 -0.2 side-band -0.4 -0.4 Expected 1.7 ± 0.8 1.7 ± 0.8 1.75 1.8 M_{inv} (GeV/c²) Observed 0 (C) 2.77 1.47 s_{90}

 $au o \Lambda \pi$

(evaluated by POLE)

投稿論文準備中

RFLI

Preliminary

Preliminary

2nd class current: 標準模型で $\mathcal{B} \sim 10^{-5}$ が予言される稀崩壊現象であるが未発見。

ケ物理解析の現状、2005.03.07 特定領域研究会@つくばエポカル – p.18/24

Preliminary

Spectral Function $v^{\pi\pi^0}$ の測定 \implies Muon の異常磁気能率への Hadronic な寄与

$$egin{aligned} v^{\pi\pi^0} \propto |F_\pi(s)|^2 \ F_\pi(s) &= rac{1}{1+eta} (BW_
ho+eta BW_{
ho'}) \ : ext{Pion form factor} \end{aligned}$$
 Breit-Wigner form (Gounaris–Sakurai model)

$$BW_{\rho} = \frac{M_{\rho}^2 + d \cdot M_{\rho} \Gamma_{\rho}}{(M_{\rho}^2 - s) + f(s) - i\sqrt{s}\Gamma_{\rho}}$$

● LFV 事象の探索: 現在の我々の中心課題

- Belle 実験で収集された 154fb $^{-1}$ のデータを用いて $au o \ell \pi^0, \ell \eta, \ell \eta'$ の 6 mode を探索
- 効率的な事象選択により背景事象を押さえることに成功。
 ηの再構成モードを増やすことで検出効率を改善
 ⇒ 過去の実験に対して 10 ~ 64 の改善
- MSSM の parameter $\tan \beta$, m_A に対する制限 現在もっとも強い制限の一つ
- 他の LFV mode の探索 (update) も継続中
- 他の解析も進行中
 - 2nd class current
 - $au
 ightarrow \pi \omega
 u, au
 ightarrow \pi \eta
 u$
 - Spectral Function
 - $au o \pi \pi^0
 u$
 - au EDM/MDM

Systematic Uncertainties

Mode $\tau^- \rightarrow$	$e^-\eta,$	$e^-\eta,$	$\mu^-\eta,$	$\mu^-\eta,$	$e^{-}\pi^{0}$	$\mu^{-}\pi^{0}$	$e^-\eta'$	$\mu^-\eta'$
	$\eta ightarrow \gamma \gamma$	$\eta \to 3\pi$	$\eta ightarrow \gamma \gamma$	$\eta \to 3\pi$				
Track recon.	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
M^0 recon.	2.0	4.0	2.0	4.0	2.0	2.0	4.0	4.0
π^0 veto	5.5	_	5.5	_	_	_	5.5	5.5
e ID	1.0	1.0	_	_	1.0	_	1.0	_
μ ID	_	_	2.0	2.0	_	2.0	_	2.0
Trigger	0.5	0.1	0.2	0.1	0.7	0.4	0.1	0.1
Beam BG	2.3	2.1	2.3	2.1	2.3	2.3	2.1	2.1
Luminosity	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
\mathcal{B}_{M^0}	0.7	1.8	0.7	1.8	—	_	3.4	3.4
MC stat.	1.4	1.7	1.1	1.6	0.9	0.8	1.2	1.1
MC models	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total	7.0	5.8	7.2	6.0	4.2	4.5	8.4	8.6

Summary of Numbers

Mode	Subdecay	ϵ	\mathcal{B}_{M^0}	$N_{ m side}^{ m DATA}$	$N_{ m side}^{ m MC}$	s_0
	mode	(%)	(%)	(ev.)	(ev.)	(ev.)
$\tau^- \to e^- \eta$	$\eta ightarrow \gamma \gamma$	5.68	39.43	2	0	2.3
	$\eta \to \pi^+ \pi^- \pi^0$	6.84	22.6	1	0	2.2
$\tau^- \to \mu^- \eta$	$\eta ightarrow \gamma \gamma$	8.03	39.43	9	9.2 ± 2.3	1.4
	$\eta \to \pi^+ \pi^- \pi^0$	7.15	22.6	2	0.8 ± 0.3	1.9
$\tau^- \to e^- \pi^0$	$\pi^0 o \gamma\gamma$	4.70	98.798	0	0.7 ± 0.7	2.4
$\tau^- \to \mu^- \pi^0$	$\pi^0 o \gamma\gamma$	6.36	98.798	16	12.5 ± 2.7	6.9
$\tau^- \rightarrow e^- \eta'$	$\eta' ightarrow \pi^+ \pi^- \eta$	8.51	17.5	2	0.8 ± 0.3	4.2
$ au^- o \mu^- \eta'$	$\eta' ightarrow \pi^+ \pi^- \eta$	8.41	17.5	5	5.5 ± 1.9	1.6

 θ : define the ω decay angle θ as the angle, in the ω rest frame, between the normal to the ω decay plane and direction of the 4th π

Summary of LFV Search in Belle

Preliminary Results

$\int L dt - 154 \text{fb}^{-1}$		Mode	$\int L \ dt$	UL of $\mathcal{B} \times 10^{-7}$
$\int \mathbf{L} \mathrm{d} t = \mathrm{TO} \mathrm{Ho}$		$ au^- ightarrow e^- \gamma$	87fb ⁻¹	$3.8 imes10^{-7}$
Mode	UL of $\mathcal{B} imes 10^{-7}$	$ au^- o \mu^- \gamma$		$3.1 imes10^{-7}$
$ au^- ightarrow e^- \pi^0$	$1.9 imes10^{-7}$	$ au^- ightarrow e^- e^+ e^-$	87fb ⁻¹	$3.5 imes10^{-7}$
$\mid au^- ightarrow \mu^- \pi^0$	$4.1 imes10^{-7}$	$\mid au^- ightarrow e^- \mu^+ \mu^-$		$2.0 imes10^{-7}$
$ au^- ightarrow e^- \eta$	$2.4 imes10^{-7}$	$\mid au^- ightarrow e^+ \mu^- \mu^-$		$2.0 imes10^{-7}$
$\mid au^- ightarrow \mu^- \eta$	$1.5 imes10^{-7}$	$\mid au^- ightarrow \mu^- e^- e^+$		$1.9 imes10^{-7}$
$ au^- ightarrow e^0 \eta^\prime$	$10 imes 10^{-7}$	$\mid au^- ightarrow \mu^+ e^- e^-$		$2.0 imes10^{-7}$
$\mid au^- ightarrow \mu^- \eta'$	$4.7 imes10^{-7}$	$\mid au^- ightarrow \mu^+ \mu^- \mu^-$		$2.0 imes10^{-7}$
$ au^- ightarrow ar{\Lambda} \pi^-$	$1.3 imes10^{-7}$	$ au^- ightarrow e^- K_S$	46fb ⁻¹	$2.9 imes10^{-7}$
$ au^- o \Lambda \pi^-$	$0.7 imes10^{-7}$	$\ \ au^- o \mu^- K_S$		$2.7 imes10^{-7}$