超対称性とフレーバー混合

山口 昌弘(東北大) 2005年3月8日 科研費特定領域第3回研究会 「質量起源と超対称性物理の研究」

Introduction

- 質量起源:
 - W/Z bosonの質量
 - quark/leptonの質量
 - hadronの質量は議論しない
- Electroweak Symmetry Breakdown (EWSB) would-be Nambu-Goldstone bosons
 - \rightarrow eaten by W/Z bosons
 - \rightarrow W/Z massive

Standard Model (SM)

- Two Roles of Higgs Fields:
 - Higgs: elementary scalar with SU(2)L doublet
 - Generates masses to W/Z bosons
 - 4 degrees of freedom
 - 3 are eaten by W/Z bosons to give their masses
 - 1 remains as physical Higgs
 - \rightarrow target of search at collider experiments
 - Geneates masses to quarks/leptons
 - Yukawa interaction
- very economical approach

Naturalness Problem in SM

- Scalar Mass:
 - unstable against radiative corrections
 Quadratic divergence
- Fine-tuning needed to keep EW scale small
- Probably this is a real problem. (cf. Cosmological Constant Problem)

Theories/Models/Scenarios of EWSB

- Supersymmetry
- Extra-Dimensions
- Higgs as Pseudo NG boson
- Technicolor
- Composite Higgs
- Higgsless

- Dynamical EWSB
 - very attractive: Many people hate elementary scalar
 - symmetry breakdown →NG bosons →W/Z boson masses
 - Difficulty to generate q/l masses
 - FCNC/large top mass
- Elementary Higgs: easy to generate q/l masses Yukawa couplings
- SUSY: Minimal version (MSSM) is compatible with gauge coupling unification.
 - This is not the case for LED.
- SUSY: still the prime candidate for Beyond-SM (since '90)

Supersymmetry

- A solution to naturalness problem
 - "how" problem: how is EW scale protected from huge radiative corrections?
 - "why" problem: why is EW scale so small?
- SUSY gives an answer to the "how" problem.
 - cancellation of quadratic divergence between bosons and fermions "technically natural"
- Approach to the "why" problem
 - dynamical SUSY breaking?
 - Still a big mystery (fine tuning in string landscape !?)

SUSY phenomenology

- superparticles not far from EW scale
- light Higgs <~130 GeV
- gauge coupling unification
- dark matter candidate (neutralino LSP)
- possible effects in FCNC processes (B/D/K and leptons)
- possible effects in CP violation: EDMs
- solid framework
 - experimental study for more than 10 yrs
 - properties well-known by simulation, though not discovered yet
 - advantage to discuss FCNC as well

Talk Plan

- Introduction
- Where is SUSY?
 - naturalness
 - dark matter argument
 - split SUSY
- SUSY around the corner !?
 - Higgs
 - g-2 of muon
 - B-physics

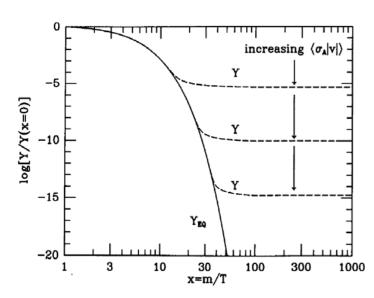
Where is SUSY?

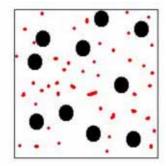
Where are Superpartners?

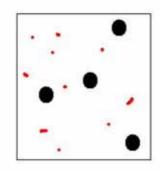
- Lower bounds
 - charginos/sleptons >100 GeV (LEP)
 - gluinos/squarks >300 GeV (Tevatron)
 - Higgs >114GeV

 \rightarrow stop typically heavier than 500 GeV (MSSM)

- Upper bounds on superpartners?
 - difficult to answer
 - Let's discuss a bit more (though no clear answer).


naturalness


- naturalness/fine-tuning
 - difficult to address quantitatively
 - Usual statement: they are not far away from EW scale
 - typically(!?) within reach of LEP/ Tevatron/ LHC.... time dependent statement
- Fine-tuning may not be a criterion at all. (e.g. split SUSY) see below


Dark Matter Argument

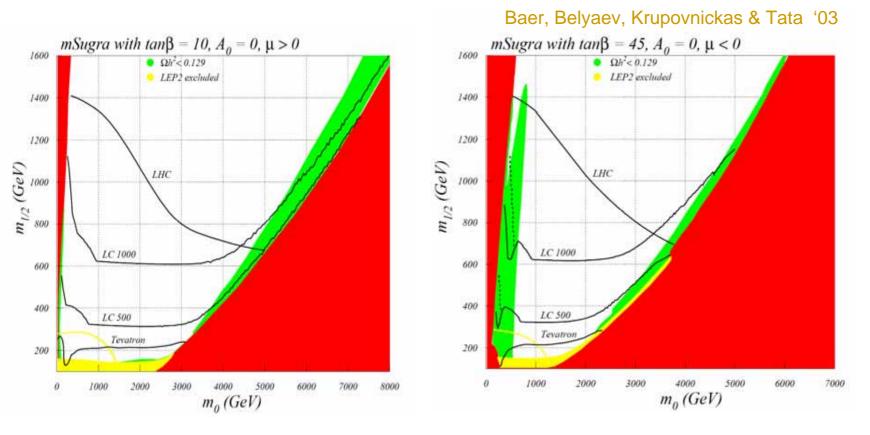
- SUSY provides an excellent candidate for cold dark matter: neutralino dark matter
- Assumptions:
 - Neutralino LSP:
 - A neutralino (a combination of neutral gauginos and neutral higgsinos) is lightest superparticle (LSP).
 - R-parity conservation \rightarrow LSP is stable
 - Thermal Relic under Standard Thermal History
 - The Universe gradually cools down from very hot universe (T>100GeV) as the Universe expands. Nothing special (such as huge entropy production) happens.

Thermal Relic Abundance

High Temp. 2005/3/8

From Text Book by Kolb & Turner

At high T, the neutralinos are in thermal equilibrium. As Universe cools down, the neutralinos get non-relativistic and their abundance is Boltzmann suppressed.


Eventually one neutralino LSP cannot find another neutralino to annihilate each other.

→Freeze-out !

Final Abundance is proportional to the inverse of the annihilation cross section. A crude estimate: $\Omega h^2 \sim 1 \times (\langle \sigma_{ann} v \rangle / 10^{-10} \text{ GeV}^{-2})^{-1}$ motivation for WIMPs

Low Temp. 質量起源と超対称性の物理

Discovery Reach at Tevatron/ LHC/ ILC

Even LHC may not be able to cover the whole region.

- No practical upper bound on supreparticle masses from the dark matter argument
 - co-annihilation with stau: very effective to reduce the relic abundance
 - (Annihilation into W is also effective in higgsino LSP.)

• Remember that the argument relies on the three assumptions.

Split Supersymmetry

Arkani-Hamed, Dimopoulos 04

New scenario motivated by string landscape
 – landscape:

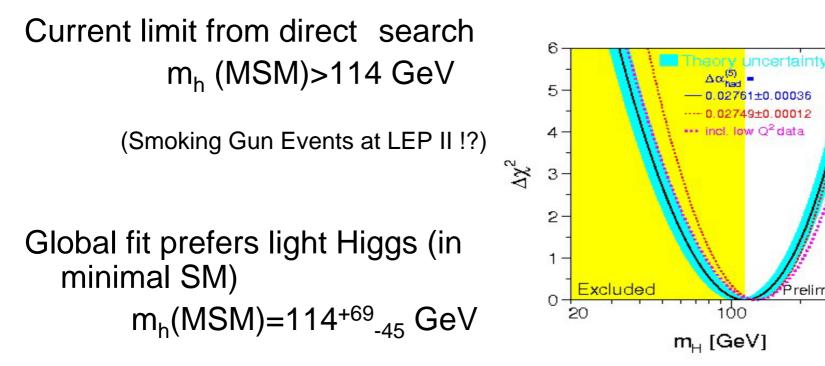
この世はfine tuningでできた 終末思想?

scalar massのfine tuning は気にしない!
 開き直り!?

Split Supersymmetry (cont.)

- scalar masses >> gaugino masses, higgisino masses
 - naturalness
 Higgs mass ~150-160 GeV
 No SUSY FCNC
 No SUSY CP
 dark matter
 gauge coupling unification
- phenomenology
 - long-lived (practically stable) gluinos
- will be (dis)proved in future collider experiments

SUSY around the corner !?


Some Hints on New Physics

• Higgs Mass

- (g-2) of muon
- B-physics: CP asymmetry in B→phi K, eta' K

Higgs Mass

(although Higgs is a part of SM)

reliminary

400

02761±0.00036 0.02749±0.00012

100

Higgs in MSSM

 $m_h < m_z = 91 \text{ GeV}$ at tree-level

 \leftarrow quartic coupling given by gauge coupling

Top-stop loop \rightarrow raises m_h significantly

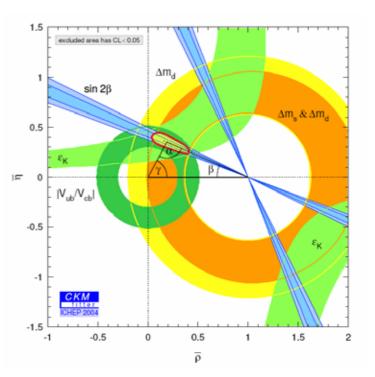
Large radiation correction needed to raise m_h above 114 GeV (especially for low m_t): Heavy SUSY mass spectrum preferred "little hierarchy problem in SUSY"

Higgs is waiting to be descovered in MSSM. We expect Tevatron to tell us crucial information on Higgs.

Note: Higgs mass is very sensitive to top mass

− m_t =174 GeV→178 GeV pushes up m_h by 2 GeV or so.

$(g - 2)_{\mu}$: Current Status

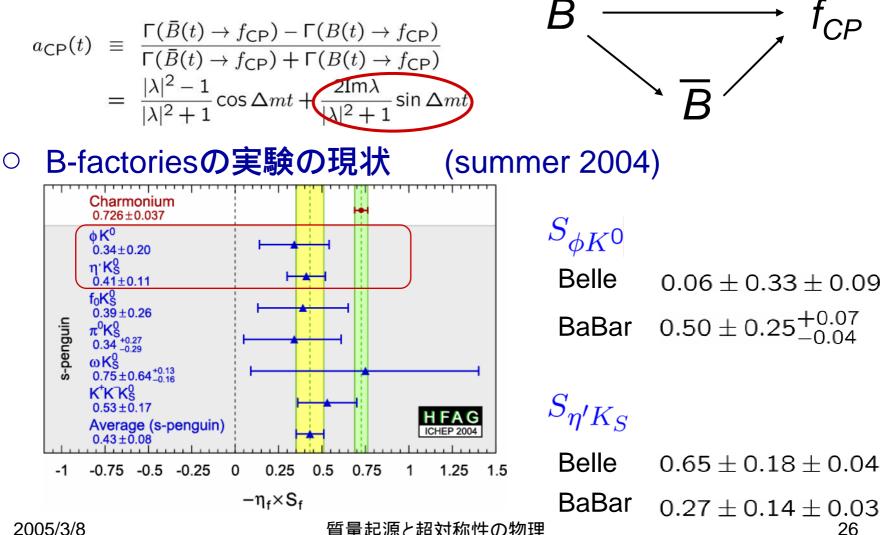

Values of $a_{\mu} = (g-2)_{\mu}/2$ Experiment : 0.0011659203(7) (μ^{-} included) PDG2004 SM prediction: 0.00116591763(74) e.g. Hagiwara et al 2004 based on $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$ $\delta a_{\mu} \sim 26(10) \times 10^{-10}$

still more than 2-sigma deviation

cf. situation in year 2001: Exp. 0.0011659202(14)(6) $\delta a_{\mu} \sim 43(16) \times 10^{-10}$

B physics

- CP asymmetry in $b \rightarrow c$ transition:
 - measurement of sin 2 beta (phi_1)
 - good agreement with SM.
 The Kobayashi-Maskawa
 framework has been established.
- $b \rightarrow s$ penguin is now a hot subject.

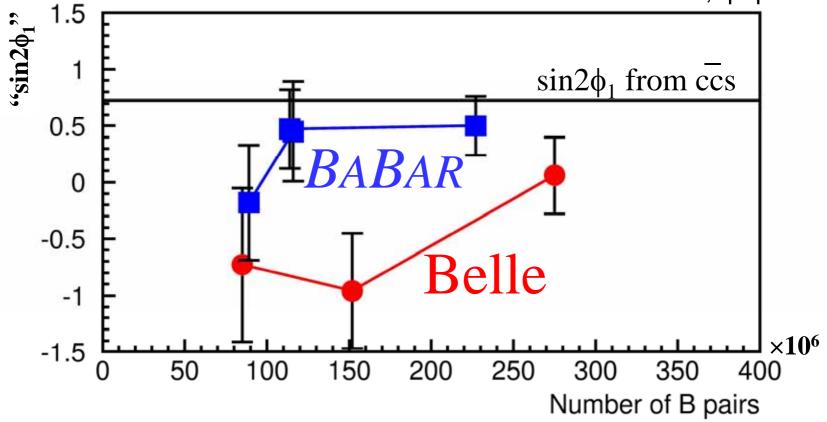

$B \rightarrow S$ penguin is interesting

- $b \rightarrow c$ tree level in SM
- $b \rightarrow s$ loop level in SM
 - Increasing chance to see New Physics Effects
 - Not fully explored yet

 Prejudice: Mixing between 2-3 generation may be large, as suggested by atmospheric neutrino.

Time dependent CP asymmetry of $B \rightarrow \phi K \& B \rightarrow \eta' K$

mixing-induced CP asymmetry Ο



2005/3/8

督量記源と超対称性の物理

History of "sin2 ϕ_1 " with ϕK^0

Hazumi, fpcp2004

- Clearly we need more data of year 2005, 2006, 2007,... to say something definite.
- Stay tuned!

- A new feature:
 - Apparent anomalies are seen in more than one mode! ($B \rightarrow \phi K$ and $B \rightarrow \eta' K$)

How theorists behave talk i last y

-- Ken-Ichi Hikasa talk in the same meeting last year

Wait and see

99% of 99%CL "new physics" will go away

Play and enjoy

- Write as much papers as you can, before it goes away
- If real, you may hit a gold mine

Take the second approach! In fact we wrote a paper and are preparing another one.

Let us consider SUSY interpretation.

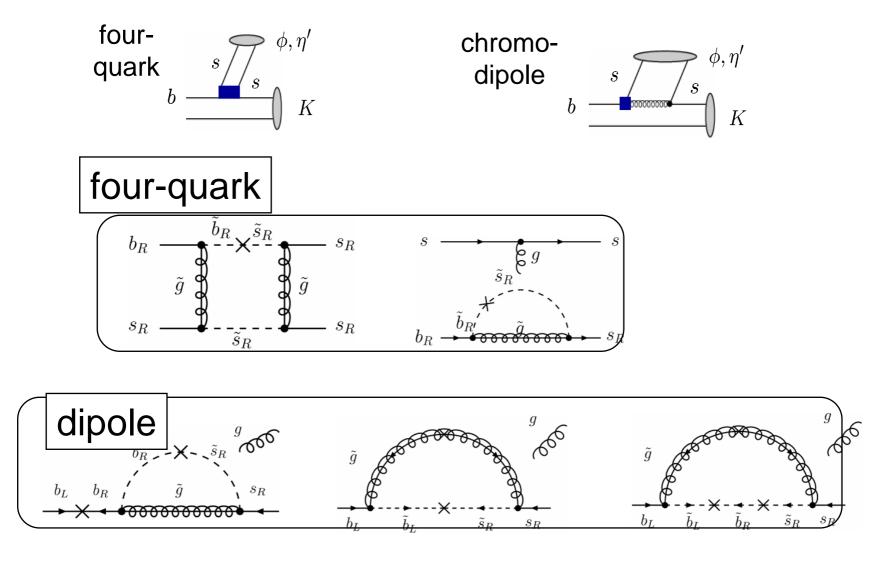
FCNC and CP in SUSY SM

New sources of flavor mixing (with CP violation): soft SUSY breaking terms

 – eg. squark masses, slepton masses (3x3 matrices, nondiagonal)

SM: FCNC is suppressed by GIM mechanism

SUSY contribution: No GIM suppression for arbitrary choice of soft masses


→ Too large FCNC for weak scale SUSY "SUSY FCNC problem"

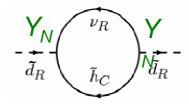
Sensible Choice of soft masses required:

Various proposals:

- Universal sfermion masses: mSUGRA, gauge mediation,...
- Aligned sfermion masses: flavor symmetry,.....

SUSY contribution to $B \rightarrow \phi K, \eta' K$

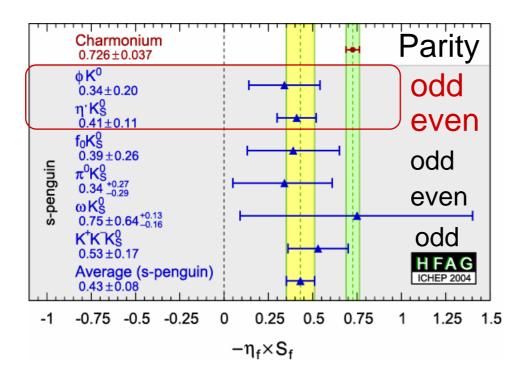
Left-Handed (LH) VS Right-Handed (RH)


- SM: W-loop, V-A current (LH structure)
- NP: Both chiralities can arise.
 Pattern of NP contribution depends on chirality structure of flavor violation in NP
- SUSY: Flavor mixing in squark masses
 - LH (SU(2) doublet) squarks
 - RH (SU(2) singlet) squarks

RH vs LH in "SDOWN" sector

- RH:
 - Large 2-3 RH sdown mixing in SUSY GUT see-saw models

(Moroi 01)

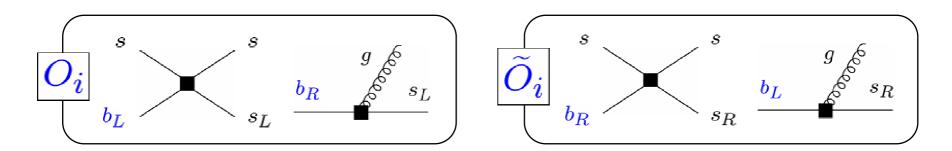

- Atmospheric neutrino implies large 2-3 mixing in neutrino Yukawa
- SUSY GUTs → large 2-3 mixing in RH sdown sector
- Large contribution to B→phi K
- Cf. solar neutrino \rightarrow Kaon physics

- LH:
 - Renormalization Group Flow: does not give significant flavor mixing with new CP phase
 - May be imprinted at Ultra-High Energy Scale
 - Flavor symmetry!?
 - Large 2-3 neutrino mixing may also give large 2-3 mixing in LH squark sector.

A SUSY Interpretation of Current Data

Endo, Mishima & MY hep-ph/0409245

Key Points:

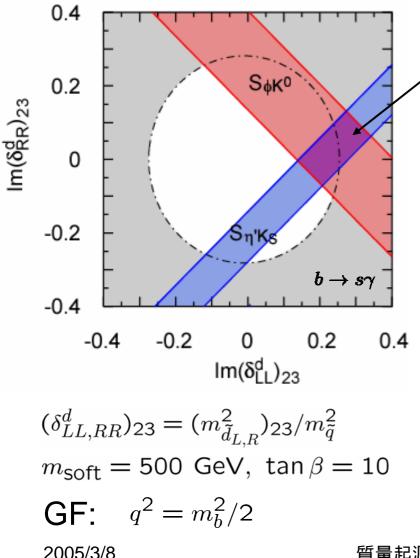

1. Anomalies in more than one mode

 $(\phi K, \eta' K)$

2. The final states have opposite parity.

Sign of Contributions by Final-state Parity

• Effective Hamiltonian $H_{eff} \sim C_i O_i + (\tilde{C}, \tilde{O} : R \leftrightarrow L)$

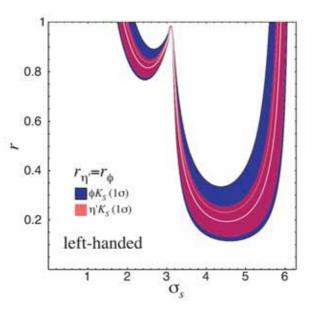


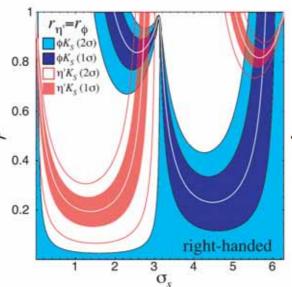
• Decay Amplitude $\langle f | \tilde{O}_i | B_d \rangle = -(-1)^{P_f} \langle f | O_i | B_d \rangle$ $A \sim \left[C_i - (-1)^{P_f} \tilde{C}_i \right] \langle f | O_i | B_d \rangle$ Kecan: Kb

Kagan; Khalil&Kou

$$A_i^{\mathsf{NP}}(\phi K) \propto [C_i^{\mathsf{SM}} + C_i^{\mathsf{NP}} + \tilde{C}_i^{\mathsf{NP}}]\langle \phi K | O_i | B_d \rangle$$
$$A_i^{\mathsf{NP}}(\eta' K) \propto [C_i^{\mathsf{SM}} + C_i^{\mathsf{NP}} - \tilde{C}_i^{\mathsf{NP}}]\langle \eta' K | O_i | B_d \rangle$$

Numerical Estimation of S_{b-s} in MSSM


Endo, Mishima & MY 04


favored by current data from B-factories (1σ)

The current data prefers LH dominant case!

2005/3/8

RH completely excluded?

Murayama & Perez 04

Larson,

$$\mathcal{A}(B^0 \to \phi, \eta') = \mathcal{A}_{\phi, \eta'}^{\mathrm{SM}} \left(1 \pm r_{\phi, \eta'} e^{i\sigma_s}\right)$$

LH interpretation:

OK for generic choice of CP phase

RH interpretation: may marginally workfor special choice of CP phase and r~1 (danger of b→s gamma etc)

← detailed study
 (Endo,Mishima &MY, in preparation)

Lesson from this analysis

- Future confirmation of the s-penguin anomalies will tell us
 - not only the existence of NP
 - but also the pattern of chiral structure (and hopefully more structure) of the NP.

Determination of Wilson coefficients Usage of more than one mode is crucial!

Prospects

More Data on s-penguin: wait and watch!

Correlation with other B decay processes e.g. $B_s - \overline{B}_s$ mixing: $\Delta m_s \ge 20 - 100 \, ps^{-1}$ $Br(B \rightarrow \mu^+ \mu^-)$ can be $10^{-7} >> 10^{-9}$ (SM)

Correlation with Lepton Flavor Violation

$$au
ightarrow \mu\gamma, au
ightarrow \mu\eta$$
 etc

 $\mu \rightarrow e\gamma$ etc

Conclusions

- SUSY: 腐ってもSUSY
 - the prime candidate for Beyond-SM
- Sparticles/Higgs Searches → Lower bounds
- No Clear Upper bounds on Sparticle Masses
- EW precision data prefers light Higgs
 - top発見の直前の状況に似ている
 - Expect Evidence (?) from Tevatron RUN II
- Some anomalies:
 - g-2 of muon
 - CP in b \rightarrow s penguin More data from B-factories to conclude
- We also expect
 - discovery of superparticles
 - dark matter detection
 - new events such as LFV $B_s \overline{B}_s \quad B \to \mu^+ \mu^-$