SEARCH FOR THE HIGGS BOSON AT CDF RUN II

Hirokazu Kobayashi

科研費特定領域 第三回研究会 「質量起源と超対称性物理の研究」 7th March, 2005

Contents

- 1. Introduction,
- 2. Recent CDF Run II Results,
 - **2.1.** Search for the $WH \rightarrow \ell \nu b \bar{b}$,
 - **2.2. Search for the** $ZH \rightarrow \nu\nu b\bar{b}$,
 - **2.3.** Search for the $gg \rightarrow H \rightarrow W^-W^+ \rightarrow \ell^- \bar{\nu} \ell^+ \nu$,
 - **2.4.** Search for the $WH \rightarrow WWW \rightarrow$ Like-Sign dilepton,
 - **2.5.** Search for the MSSM $h/A/H \rightarrow \tau^- \tau^+$.
- 3. Re-evaluating Higgs Sensitivity at CDF,
- 4. A Pseudo Experiment with Signal (115) and backgrounds,
- 5. Summary.

Introduction - Motivation

- Standard Model is an *effective* theory of particle physics up to the electroweak scale *O* (100 GeV),
- Standard Model predicts the existence of Higgs boson and requires "new physics" to stabilize the Higgs mass,
- Possible source of new physics:
 - **SUSY** and its variants,
 - *Extra-*dimensions,
 - Little Higgs,
 - Higgsless ...
- Need experimental inputs for the future direction !!

Introduction - Typical Cross Section

Physics in $p\bar{p}$ Collider

- Start $p\bar{p}$ inelastic scattering: 60 mb,
- QCD JETS physics: mb order,
- Electroweak physics: nb order,
- Top pair production cross section: \sim 6 pb,
- SM Higgs production cross section: $\sim 10^2$ fb.
- Change 10 orders of magnitude!!

dominates but dijet background too big,

• $q\bar{q}' \rightarrow WH$, ZH:

Most accessible, easy to trigger, $WH+ZH \sim 300$ fb (115 GeV), 90 fb (160 GeV).

- $M_{\rm H} \ge 135 \; {\rm GeV}/c^2 : H \to WW$
 - Exploit the large $\sigma(gg \rightarrow H)$,
 - Identify clean final states with leptons.
- Very Challenging at Tevatron ...

Introduction - Run I VH searches (106 pb^{-1})

Higgs mass distributions

Expected and Observed events

- Set $\sigma_{\mathrm{VH}} \cdot Br <$ 8 pb at 95 % C.L. ,
- $WH \rightarrow \ell\nu + b\bar{b}$, Exp: 30 \pm 5, (single tags) Obs: 36, Exp: 6 \pm 0.6, (double tags) Obs: 6,
- $WH \to \ell \nu + q\bar{q}$, Exp: 600, Obs: 580,
- $ZH \rightarrow \ell^+ \ell^- + b\bar{b}$, Exp: 3.2 \pm 0.7, Obs: 5,
- $ZH \rightarrow \nu \bar{\nu} + b\bar{b}$, Exp: 39.2 \pm 4.4, (single tags) Obs: 40, Exp: 3.9 \pm 0.6, (double tags) Obs: 4,

Introduction - SM Higgs searches

SM Higgs Searches

Mass Region

- $M_{\rm H} = 117^{+67}_{-45} \ (M_{\rm top} = 178.0 \pm 4.3 \ {\rm GeV/c^2})$,
- $M_{\rm H} < 251~{\rm GeV/c^2}$ at 95 % C.L.,
- LEP excludes $M_{\rm H} \leq 114.4$ GeV/c² at 95 % C.L.

Tevatron CDF Run I

• Set $\sigma_{\rm VH} \cdot Br < 8$ pb at 95 % C.L., $WH \rightarrow (\ell \nu, \ q\bar{q}) + b\bar{b}$, $ZH \rightarrow (\ell^+ \ell^-, \ \nu \bar{\nu}) + b\bar{b}$,

Tevatron CDF Run II

- $WH \rightarrow \ell \nu + b \bar{b}$ ($\sigma_{\rm WH} \cdot Br <$ 5 pb),
- $gg \rightarrow H \rightarrow WW \rightarrow \ell \nu \ell \nu$, ($\sigma_{\rm gg \rightarrow H} \cdot Br <$ 6 pb),
- $WH \rightarrow WWW \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu + qq$ ($\sigma_{WH} \cdot Br < 8$ pb).

Recent CDF Run II Results

• Re-established the top signal in lepton+jets and dilepton events using ...

- 1. lepton identification,
- 2. heavy-flavor tagging,
- 3. jet energy scale.
- Higgs boson searches still at the engineering stage,
- SM Higgs boson searches Very challenging,
 - $-WH \rightarrow \ell \nu b \bar{b}$: lepton + jets signature,
 - $-ZH \rightarrow
 u
 u b \overline{b}$: E_T + jets,
 - $-gg \rightarrow H \rightarrow WW$: high- p_T Opposite-Sign dilepton + $\not\!\!E_T$,
 - $-WH \rightarrow WWW$: high- p_T Like-Sign dilepton + $\not\!\!E_T$,

• MSSM Searches

 $-A/H/h
ightarrow bar{b}, auar{ au}$: multi b-jets or ditau,

 $WH \rightarrow l\nu bb$

- Exact one tight lepton (e/μ) with $p_T > 20$ GeV,
- $\not\!\!E_T > 20~{\rm GeV}$,
- Exact 2 jets at least one b-tagged jet,

- Extra lepton or jet veto to reduce $t\bar{t}$ background,
- Number of jets distribution was consistent with expected background.

 $ZH \rightarrow \nu \nu bb$

- Use *ZH* production,
- Select events with large \mathbb{E}_T and two b-tagged jets,
- Large dijet backgrounds, but less top contributions,

- Key is to understand the QCD background,
- Most sensitivity channel,
- Limit is in progress ...

- Take full advantage of large $\sigma(gg \to H)$,
- Opposite-Sign dilepton + E_T ,
- Tendency of collinearity of dilepton from decay of Higgs boson,
 - Small dilepton invariant mass,
 - Small dilepton angular separation.

科研費特定領域 第三回研究会, 7th March, 2005

Cluster mass

$$M_c = \sqrt{p_{T\ell\ell} + M_{\ell\ell}} + \not\!\!\!E_T$$

Background

- Electroweak WW,
- W + fake lepton,
- Drell-Yan.

- Set a limit on $\sigma(gg \rightarrow H) \times Br(H \rightarrow WW)$ using dilepton opening angle distribution,
- $\sigma(gg \rightarrow H) \times Br(H \rightarrow WW) < 6$ pb at $M_{\text{Higgs}} = 160$ GeV.

 $WH \rightarrow WWW \rightarrow l^{\pm} \nu l^{\pm} \nu qq$

- 1. Like-Sign dilepton + E_T ,
- 2. Very low background,
- 3. Fake or non-prompt lepton are main background.

Signal process:

- 1. High mass SM Higgs boson,
- 2. Bosophilic (or fermiophobic) Higgs as benchmark test

MSSM Higgs $\rightarrow \tau \tau$ Search, final events

	$ au_h au_e$	$ au_h au_\mu$	Combined
$Z \to \tau \tau$	132.3 ± 17.1	104.1 ± 13.3	236.4 ± 29.5
$Z \rightarrow ll$	1.8 ± 0.2	4.9 ± 0.4	6.7 ± 0.6
$t\bar{t},VV$	0.7 ± 0.1	0.8 ± 0.1	1.5 ± 0.1
$jet \rightarrow \tau$	12.0 ± 3.6	7.0 ± 2.1	19.0 ± 5.7
Total predicted	146.8 ± 17.5	116.8 ± 13.5	263.6 ± 30.1
Data	133	103	236

CDF Run II Preliminary

- Semileptonic τ decay + Hadronic τ decay,
- $H_T > 50 \text{ GeV}$,
- Missing E_T should not point in opposite direction to τ decay products.

科研費特定領域 第三回研究会, 7th March, 2005

Search for the Higgs Boson at CDF Run II

Search for the MSSM $h/A/H \rightarrow \tau^- \tau^+$ - contd

Result

- Mass resolution worse at higher masses,
- Use binned likelihood fit to mass spectrum set 95 C.L. limit,
- Limit is order of magnitude higher than prediction($tan\beta$).

- CDF/DØ were asked by DOE to provide a new estimation of the Higgs Sensitivity based on current Run II detector performances (2003),
- Focus on the improvement of detector and analysis techniques (b-tag efficiency, dijet mass resolution, advanced analysis techniques),
- Finding consistent with SUSY-Higgs Workshop report (1998).

- Fit the dijet mass with signal and background,
- Extract the int. luminosity needed for the 95% C.L. exclusion limit, and 3 σ and 5 σ discovery.

Summary

- The Higgs boson remains elusive, but discovery may be just around the corner!
- The Tevatron is at the world's energy frontier until the LHC era,
- Already with 200 pb⁻¹, CDF and DØ have produced many interesting results,
- There is an extremely rich, exciting physics program ahead of us, every times we double the integrated luminosity we open a new window for new physics,
- The Higgs sensitivity will improve over time as we get more data, better understood detector, and getting smarter, but challenging ...
- With 5 fb⁻¹ data, Tevatron will:
 - Exclude SM or SM-like Higgs mass up to 130 GeV/ c^2 at 95% C.L.
 - Have a 3 σ discovery for Higgs mass up to 120 GeV/c²,
 - Set a stringent limit on MSSM or more exotic Higgs in the parameter space beyond the SM
- Stay tuned!!