$K^+ \rightarrow \pi^+ \gamma \gamma$ 崩壊の研究

吉岡 瑞樹

<u>Contents</u> :

- Introduction
- BNL-E949 Experiment
- Offline Analysis
- Results
- Conclusion

Physics Motivation

- カイラル摂動理論(低エネルギーQCDの有効場理論)の 実験的検証。
 - 特異な運動量分布 (confirmed by previous experiment)
 - 高次の補正の有無 (not confirmed yet)

Experimental Status

Experimental Status(Cont.)

観測された31事象はカイラル摂動論を支持。 しかしながら、高次補正なしと矛盾しない。 → $K_{\pi 2}$ peak より上の領域で探索を続行 (BNL-E949実験)

BNL-E949 Experiment

- 稀崩壊 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ とそれに 付随する崩壊モードの研究。
- <u>Stopped Kaon Experiment</u> K⁺を測定器中で静止させ、 その崩壊を観測する。 - E949検出器
- 円筒形、1-テスラの磁場中に設置
- (図:側面図、断面図の上半分)
 2002年度に収集したデータより
 - 新しい $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ の候補を 1事象発見。

E949 Collaboration, PRL 93, 031801 (2004)

科研費特定領域 第三回研究会

5

Barrel Photon Detectors

E949 Detector

Collected Data

• E949-2002年のランで、
 π⁺運動量のエンドポイント付近
 でのシグナルの観測を目的とし
 たトリガーを新たに導入。

<u>トリガー</u>

- •ターゲット中でK+が静止/崩壊。
- 荷電粒子のレンジがK_{π2}崩壊
 のものより長い。
- ・バレル領域でフォトンの検出。
- ・荷電粒子に同期したactivityが 他にない。
- ~25ev/spill, no prescale.
- Accumulated Kaons : ~1.192e12.

Online Event Display

Offline Signal Identification

 (1) 荷電粒子に対する要求
 - 運動学的パラメータ(運動量・レンジ・ 運動エネルギー)がK⁺→π⁺π⁰ 崩壊 の^{π+}より高い(P_{π⁺} > 213MeV/c)。
 - 荷電粒子が^{π+}である(Particle ID)。

 (2) フォトンに対する要求
 - バレル領域で再構成されたフォトン・ クラスターの数が1個、または2個。
 - エネルギーが高い方のフォトンはπ⁺ に対して反対側で検出される。

(3) 入射ビームに対する要求
 - ターゲット中でK⁺ が静止・崩壊した。
 - 他の入射ビームがK⁺ の崩壊時間に
 Beamline 検出器で同時計測されない。

Background Estimation

 バックグラウンドをそのメカニズム により分類。
 各バックグラウンドレベルを Bifurcation Method(二股分割法) を用いて評価。

source	Background Level		
Kpi2	0.017 ± 0.006 events		
Overlap	0.065 ± 0.065 events		
Muon	0.090 ± 0.020 events		
1Beam	0.025 ± 0.014 events		
2Beam	< 0.006(90% C.L.) events		
Total	0.197 ± 0.070 events		

科研費特定領域 第三回研究会

3/8/2005

科研費特定領域 第三回研究会

11

Background Estimation

 バックグラウンドをそのメカニズム により分類。
 各バックグラウンドレベルを Bifurcation Method(二股分割法) を用いて評価。

source	Background Level		
Kpi2	0.017 ± 0.006 events		
Overlap	0.065 ± 0.065 events		
Muon	0.090 ± 0.020 events		
1Beam	0.025 ± 0.014 events		
2Beam	< 0.006(90% C.L.) events		
Total	0.197 ± 0.070 events		

科研費特定領域 第三回研究会

Correlation Check

- Bifurcation Method で用いた2つのカットの独立性の確認

Correlation Check

- : prediction
- : observation

¹⁰ Loosening Factor - 観測されたイベント数は background functionの 予測と良く一致している。

→ Bifurcation Methodで
 用いた2つのカットの
 独立性が確認された。
 = 評価されたバックグラ
 ウンドは reliable。

Opening-the-Box

- 全選択条件を課した後の荷電粒子のレンジ・運動エネルギー分布

Single Event Sensitivity

• Single Event Sensitivity (S.E.S)

- Acceptance : 1.655×10⁻⁵(補正無し)、1.550×10⁻⁴(補正有り)
- Target中でのK⁺の静止効率: 0.7541

- # of K⁺ beam : 1.192×10^{12}

	<i>Br</i> (Theory) (10 ⁻⁹)	S.E.S (10 ⁻⁹)	Expected(events)
補正無し	3.50	67.2	0.05
補正有り	11.8	7.18	1.64

カイラル摂動理論の高次補正が存在すれば、S.E.S は予言値 に達しており、1.64イベント観測が期待できた。

Results

- カイラル摂動論及びPhase Spaceを仮定した場合各々について 90% Confidence Levelの上限値を得た。

 $BR(K^+ \to \pi^+ \gamma \gamma, P_{\pi^+} > 213 \text{MeV/c}) < 9.08 \times 10^{-9} \text{ (for ChPT } O(p^6)\text{)}$ $< 2.29 \times 10^{-8}$ (for ChPT $O(p^4)$) 信号領域の下限値 $< 9.90 \times 10^{-9}$ (for Phase Space)

0.8 - 高次補正の有無によらず、 Branching ratio (10⁻⁹) **-90%** U.L. いずれもカイラル摂動論の -ChPT $O(p^6)$ 0.6 予言値と矛盾しない結果と なった。 0.4 - 前実験より7.6倍厳しい上限値 を与えた。 0.2 210 200 220 π^+ Momentum (MeV/c) 科研費特定領域 第三回研究会

Conclusion

- カイラル摂動理論の高次補正の有無を確認するため、 BNL-E949実験が2002年に収集したデータを用いて $K^+ \rightarrow \pi^+ \gamma \gamma (P_{\pi^+} > 213 \text{MeV/c})$ の探索を行った。
- 信号領域でのバックグラウンドを評価するため、 "Bifurcation Method" が用いられ、バックグラウンドの合計は 0.197±0.070 イベントと見積もられた。

- $K^+ \rightarrow \pi^+ \gamma \gamma$ 崩壊分岐比に対する上限値(90% C.L.)は、

 $BR(K^+ \to \pi^+ \gamma \gamma, P_{\pi^+} > 213 \text{MeV/c}) < 9.08 \times 10^{-9} \text{ (for ChPT } O(p^6))$

となり、この崩壊モードに対して最も厳しい上限値を得た。