

Points for TOF counter Photo-detector Measurements - Beam tests New Approaches Know-how

Footnote: MCP-PMTにもとずく 10 psec TOF counter R&Dの報告である。

Footnote: これまで開発研究した光検出器の1光子に対する信号と測定TTS。信号の立ち上がりの速さを比較せよ。

- 2. Cherenkov light
- 3. Normal incidence

 σ = (30x2–30) ps /1cm/($\sqrt{12N}$) = 9 ps/ \sqrt{N} / 1 cm)

4. 50 detected photons/1 cm quartz

For short path, no chromaticity effect. $\sigma = 30-40 \text{ ps}/\sqrt{50} = 5-6 \text{ ps}$

1. Points for TOF counter (continue)

Footnote: TOF精度を決める要因。 回路系の精度(実測値 = 7-9 psec)。ビームテストではatt.&は不要。

2. Veasurements L16-TOF

NIM submitted by Y.Enari et al, Cross-Talk of a Multi-Anode PMT and Attainment of a σ sim 10 ps TOF counter

TTS=80 ps, N γ = 120-160/ 4 cm quartz, 16 independent measures

 $\sigma_0 = 80/\sqrt{9}$ (photons/channel) / $\sqrt{16} = 7$ ps

 $\sigma_{expected} = 11 \text{ ps}$ including circuit fluctuation of 9 ps.

Footnote: L16-PMTによるTOF。16の独立な測定 期待値=11 psec。

Footnote: ビームテストのデータ、各チャンネル分解能 = 30 psec 16チャネルでは12.1 psec。

Intrinsic resolution and systematic ncertainty

In order to examine the origin of the systematic uncertainty, we suppose the measured timeof-flight $(tof_{\alpha j})$ to be composed of two components: the subjective time $(t_{\alpha,j})$ and the systematic uncertainties (t_x) , as

$$tof_{\alpha,j} = t_{\alpha,j} + (t_{32} + t_{16} + t_8 + t_4 + t_2), \qquad (8)$$

where t_{32} is the uncertainty common to all $32 = 2 \times 16$ channels; t_{16} is common to j = 1-16 channels, nels, but different at each counter, $\alpha = 1$ or 2; t_8 is common to j = 1-8 and also 9-16 channels, but different at 8 individual channels and each counter; t_4 is common to j = 1-4, 5-8, 9-12 and 13-16 channels, but different at 4 individual channels and each counter; t_2 is common to j = 1-2, 3-4, \cdots , 15-16 channels, but different at 2 individual channels and each counter.

 σ^N can be expressed as

$$(\sigma^N)^2 = \frac{a^2}{N} + b^2,$$
(9)

where a is the time resolution of a single channel, and b is the contribution of the systematic uncertainty. An adequate combination of two channels cancels certain t_x 's in the time-of-flight $tof_{\alpha,j} - tof_{\beta,k}$, and its N dependence of $(\sigma^N)^2$ provides a and b.

Footnote: Systematic errorの評価。 j = 16とj = 4での寄与が大きい。

NIM A528 (2004) 763-775, by M. Akatsu et al, "MCP-PMT timing property for single photons"

-				
MCP-PMT	HPK6	BINP10	HPK10	Burle25
diameter of MCP-PMT (mm) diameter of effective size (mm) photocathode gaps (mm) $D^{\ddagger3}$ (μ m) $\alpha = L/D^{\ddagger3}$ bias angle (°)	45 [¢] 11 [¢] bialkali 2 / 0.03 / 1 6 40 13 2 0	30.5 [¢] 18 [¢] multialkali 0.2 / 0.1 / 1.2 10 40 5	52 [¢] 25 [¢] bialkali 1.1 / 0 / 0.94 10 43 12	71×71 ^{µ1} 50×50 ^{µ2} bialkali 6.4 / 0.032 / - 25 40 10
max. voltage (kV) divider ratio gain	3.6 2 : 4 : 1 2 × 10 ⁶	3.2 3.4 : 30 : 1 $\sim 10^6$	3.6 2 : 4 : 1 ~ 10 ⁵	2.5 1 : 10 : 1 6×10^5

MCPの構造

MCP(Micro-Channel Plate)

2. Measurements / MCP spectra

• HPK R3809U-50-25X

• BI NP N4963

With different TTS [L16(TTS=80 ps) & MCP(TTS=46 ps)] and similar N 's, $\sigma_{observed} = 11-12$ ps is attained, where the circuit fluctuations (7-9 ps) dominate the ambiguity.

Footnote: HPK10 TOFのビームテスト。期待値=9 ps vs。測定値=10.6 ps。

Summary

- 1. TOF resolution = 10 ps achieved !
- 2. K/pi separation at Belle (Belle is a relatively small spectrometer)

~ 4 σ at 4 GeV/c

- 3. Issues to be solved:
 - (1) MCP-PMT lifetime
 - (2) enlargement of radiator
 - (3) precise circuit

