

Photodetector for Aerogel RICH

Toru Iijima Nagoya University

特定領域科研費「質量起源」研究会 March 9, 2004

Collaborators

- T.Sumiyoshi, T.Matsumoto, T.Seki
- I.Adachi, K.Suzuki, S.Saitoh
- T.lijima, Y.Kozakai
- H.Kawai, T.Tabata, R.Ishibashi
- S.Ogawa, Y.Uchida
- P.Krizan, S.Korpar, R.Pestonik, S.Fratina (Slovenia)

TMU KEK Nagoya Chiba Toho Ljubljana

Talk Outline

"Frozen smoke"... The lightest material in solid form

- Introduction
 - □ Particle ID in Belle
 - □ Why Aerogel-RICH ?
- Requirement for Photodetector
- Results w/ Flat Pannel PMT

- Development of Hybrid Photodetector (HPD/HAPD)
- Remarks
- Summary

Particle ID in Belle

- Physics Targets
 - Flavor tagging
 - □ $B \rightarrow \pi \pi / K \pi / K K$, $B \rightarrow D K / D \pi$
 - □ Low momentum μ/π at Super-B
 - A_{FB} in B→KII

Present PID

- dE/dx + TOF + ACC(threshold)
- □ Eff.(K→K) ~90% / fake(π →K) ~10%
- Lack of high momentum PID in the forward endcap
- □ (almost) no μ/π for P_T<1.0GeV/c

• Upgrade target = K/ π separation for 0.7~4 GeV/c @ >4 σ (similar μ/π separation for P< 1GeV/c)

BBb

fcp -

Possible Upgrade Plan

- Barrel → TOP (Time-Of-Propagation) Counter 計画
- Endcap → Proximity Focusing Aerogel-RICH

Barrel PID \rightarrow TOP

Endcap-PID → Aerogel-RICH

Photo detector (position sensitive, pixel size=6 mm)

公募

Why Aerogel for RICH?

- Less material $\rho \sim 0.1-0.2 \text{ g/cm}^3$
- Compact ring background
- Large $\Delta \theta_{c}$ \longleftrightarrow small chromatic error Separation power $S = \frac{\Delta \theta_{c}}{\sigma_{0}} \sqrt{N_{pe}}$
 - Single photon resolution
 - □ Optics (emission point, mirror, ...)
 - Pixel size in photodetection
 - Chromatic dispersion
 - Quartz ~5mr
 - C₅F₁₂ (liq.) ~3mr
 - Aerogel ~2mr (※)
 - ※ NIM A457(2001)52

Aerogel fills the gap also in RICH application (new trend)

Proximity Focusing Aerogel RICH

- For Belle upgrade in the forward endcap
- >4σ K/π for 0.7
- Proximity focusing w/ n =1.05, 2cm.
 - □ No mirror complex
 - \rightarrow suitable for collider geometry
 - □ Thin radiator
 - \rightarrow light yield enough ?

Photodetection in B=1.5T w/ 5 × 5mm²

The major R&D items
 Photodetection in 1.5T
 Aerogel improvement

Design values

Npe	~7.5
σ_0	11mr
$\sigma(pix)$	6.4mr
$\sigma(em)$	8.6mr
$\sigma(chr)$	2.0mr

Photo detector (position sensitive, pixel size=6 mm)

Photodetection for Aerogel RICH

- Rayleigh scattering dominates in aerogel $T = A \cdot e^{-CL/\lambda^4}$
- → Short wave length suppressed.
- → Detection in visible wavelength region
- → Vacuum based device w/ bialkali/multialkali photocathode.

科研費特定領域「買重起源」研究会

Photodetector Requirements

Single photon counting in visible λ region with good

- Position sensitivity ~5mm
- Q.E. x C.E. >20%
- Magnetic field immunity 1.5 T
- Effective area >70%

++ ASIC development to readout many channels. O(10⁵)

- Hybrid photodetector (HPD)
- MCP(micro-channel-plate) PMT
- Flat Panel PMT

Ideal (probably)

- C.E.<60%
- don't work in 1.5T

No device on market satisfy the requirement

Flat Panel PMT (HPK H8500)

Still under developing…
 →Large variation among 16 PMTs
 Q.E.: 16~25% (@400nm)
 Gain: 1~6 x 10⁶

- Large effective area, 84%
 - \Box 64ch (pixel size = 6mmx6mm)
 - □ aligned with 52.5 mm pitch
- Response for Cherenkov photon

科研費特定領域「質量起源」研究会

Beam Test w/ Flat Panel PMT

- Demonstration of principle
 - \Box 4 × 4 array of H8500 (85% effective area)
- σ₀ ~14mr
- Npe ~ 6
 - □ ~9 if normalized to the best PMT sensitivity
- \Rightarrow 4 σ K/ π at 4GeV/c

Hybrid Photodetector (HPD)_{pad-HPD (CERN/LHCb)}

- Marriage of vacuum photocathod and silicon device technologies.
- Photoelectrons are accelerated w/ 10-20KV, bombarded on Si and lose its whole energy.
- Create electron-hole pair per 3.6eV loss. Gain = 3000-5000 / pe
- No multiplicative process Much less gain fluctuation for each photoelectron. **Conventional PMT**
- Geometry: Electrostatic / proximity focusing Operate in B field
- Sensor: PD / APD
 - Additional 10-100 gains

科研費特定領域「質量起源」研究会

Sketch by T.Ypsilantis

Donatern =

V Glass

glass

M.Matthias et al, IEEE2003 NSS-MIC Conf.

Our New Development 12x12 HPD

- Proximity geometry for use in strong B filed
- Large effective area
- Consider both PD/APD options

Package	72x72mm ²		
Number of pixels	12x12 (6x6/chip)		
Pixel size	5x5mm ²		
Effective area	64%		
	PD	APD	
Gain	2000	20000	
Cd	10pF	80pF	
l (leak)	10nA	30nA	

Ptototype Test [Single Channel HPD]

- TO-8 type (sensitive area = ϕ 8mm)
- V_{HV} = -8KV
- V_{BIAS} = -80V
- Gain = 1500 e/photon

Prototype Test [3x3 HAPD]

- Diode= □5mm/ch
- VHV = -8KV
- VBIAS = 320V
- Gain = 26000 e/photon
- Cd = 73pF / I_L = 14nA
- Surface irradiation type
- Larger noise than HPD
- Low yield of APD?

2004/3/9

科研費特定領域「質量」

Prototype Test [3 x 3 HPD]

- Photon counting test in progress
- Back irradiation type
- No serious problem in production
- EB gain = 2100 @ 8KV

科研費特定領域「質量起源」研究会

Status of 12x12 H(A)PD

- The bulb part is made of ceramic.
- Vacuum leak test is underway.
- 4x(6x6) HPD/HAPD installed in the ceramic case by a transfer technology.
- The 1st prototype coming soon.

No photocathode In this sample

Development of Readout ASIC

- Total #channel in the real system = 120K
- Photodetector characteristics
 - □ Gain ~ 2000 (HPD) / 20000(HAPD)
 - \Box Cd ~ 10pF(HPD) / 70pF(HAPD)
 - Leak I ~ 10nA(HPD) / 30nA (HAPD)
- Small space

Need

- □ High density front-end electronics
- High gain w/ low noise amplifiers
- Deadtime less readout scheme (pipeline)

ASIC development

ASIC for HPD/HAPD Readout

- Basic parameters (Rohm 0.35µm CMOS)
 - □ Gain = 5V/pC
 - □ Shaping time = 0.15µs
 - □ VGA = 1~16
 - Pipeline readout w/ shift register
 - 18 channels/chip
 - 5mW/channel
- 1st trial at VDEC

Remark: New Optics in Aerogel RICH ? Preliminary

Is there any way to increase L and hence improve Npe without diminishing σ(emission) ?

Remark: GaAsP Photocathode?

- Sensitive in longer wavelength (<700nm)
 - Lead to less chromatic error
 - Aerogel is more transparent
- QE as high as 40% (or more) at peak

 \rightarrow compensate N_{pe} loss due to $1/\lambda^2$ dependence.

科研費特定領域「質量起源」研究会

Backup Slides

Limitation of RICH

Investigation by P.Glassel [NIM A433(1999)17]

- Pmin limited by the decrease in N/N_{max}
- Chromatic error dominates @ P_{max}
- P_{max}/P_{min} = 4~7

Need two/three radiators to cover wide region.

• Aerogel fill the gap also in RICH application.

Radiator	LiF	$C_{6}F_{14}$	C_5F_{12}	N ₂	He
L	1 cm	1 cm	0.5 m	2 m	10 m
71	1.35	1.62	16	41	120
Bandwidth (eV)	6-7.7	6-7.3	5.5-7.7	5.5-7.7	5.5-10
$\sigma_{\rm e} = \Delta n / \sqrt{18}$	0.009	0.0028	30×10^{-6}	12×10^{-6}	5×10^{-6}
σ_{θ} (mrad)	5.4	2.8	0.45	0.40	0.13
σ_{ib} (mrad)	1.8	0.9	0.14	0.13	0.042
Chromatic/msc	5	5	10	30	60
3σ separ. Kπ					
$p_{\rm max}~({\rm GeV}/c)$	4	7	50	100	330
p_{\min} (GeV/c)	0.6	0.88	11	28	83

Table 3 Examples for chromatic aberration limits

Chromatic Error in Aerogel

R.De Leo et al., NIM A457 (2001) 52

Fig. 2. The refractive index of one Matsushita aerogel tile measured at six wavelengths. The solid, dashed, and dotted lines are fits to the experimental data based on Eqs. 3, 4, and 7, respectively, with calculated values normalized to the experimental value of the refractive index of aerogel at 633 nm.

科研費特定領域| 質量起源」研究会

cf) LHCb RICH

- Three radiators to cover 1~100 GeV/c
- RICH1: Aerogel(n=1.03) 5cm 1-10 GeV/c
 C₄F₁₀ (n=1.0014) 80cm 10-60 GeV/c
- RICH2: CF₄ (n=1.0005) 2m -100 GeV/c
- Photodetection by HPD array
 - \Box 2.5 × 2.5mm granularity, total area = 2.6m²

Design values

	Aerogel	C ₄ F ₁₀	CF ₄
Npe	~7	~31	~23
σ_0	2.0mr	1.3mr	0.6mr
$\sigma(pix)$	0.6mr	0.6mr	0.2mr
$\sigma(opt)$	0.3mr	0.7mr	0.3mr
$\sigma(chr)$	1.6mr	0.8mr	0.4mr

10σ K/π for 10-40 GeV/c 3σ K/π for 30-90 GeV/c

Improved Aerogel by Matsuhita/KEK

Optimization for n=1.05

- n=1.01~1.03 range was optimized in the Belle construction, but not for n=1.05
- →Cooperative research with Matsushita Co. Ltd.
- Improvement in transmission length, Λ(@400nm)

15mm → 45 mm [n=1.05]

Solvent	methyl alcohol →di-methyl-formamide(DMF)
Precurser	Methyl-silicate-51 from different company

Studies are still in progress...

Test w/ Flat Panel PMT

Dual Aerogel RICH

Pion and kaon rings for the two dual radiator shemes Pion and kaon rings for the two dual radiator shemes

 $p=3GeV/c, \theta_i=20^{\circ}$

科研費特定領域「質量起源」研究会

Proximity Focusing HPD R&D by KEK+HPK

- Proximity focused structure for operation in strong B field.
- Acceleration voltage = 8KV
- Avalanche diode
 - 8x8 pixels
 - 2x2 mm2/pixel
- Total gain = 4x10⁴

HPD with old AD

2000

Output pulse height (ADC count)

2500

3000

科研賀特正領域| 貨重起源] 研究会

500

1000

1500

1 pe

1500

1000

500

Entries

3500

4000

MCP-PMT

- Electron amplification in micro channel (φ ~10µm)
 - Fast/small transit time spread
 - Gain saturation
 - B field immunity
- Geometrical apperture ~ 60%
 ※ without AI film at MCP-in
- Gain ~O(10⁶) w/ 2-3 stages
- R&D in progress for
 - □ Focusing DIRC (SLAC)
 - TOP (Belle/ Nagoya)

HPK MCP-PMT R&D at Nagoya

1x4 linear-anode MCP-PMT newly developed for TOP readout.

Test of 1st batch sample

- Linearity (left)
- Channel-by-channel offset variation

