シンチレータストリップを用いた 高性能電磁カロリメータの開発

(公募研究A1) 研究代表者 川越清以 (神戸大学) with the GLC calorimeter group (KEK, Kobe, Konan, Niigata, Shinshu, Tsukuba) 9-Mar-2004, 科研費特定領域 第2回研究会 in Tsukuba (Special thanks to Dr. Matsunaga)

Introduction

Hardware study with test beams

Photon sensors

Simulation study

Future plan

Summary

Introduction

- Design criteria for LC calorimeter
 - good energy resolution for single particles
 - fine transverse/longitudinal granularity for "particle flow" analysis
 - hermeticity
 - operational in strong magnetic field
- Required performance
 - 2-jet mass resolution better than W/Z natural width

Our approach to the design criteria

Baseline design :

Lead/plastic scintillator sampling calorimeter for both ECAL and HCAL

- Hardware compensation for excellent hadron energy resolution and linearity
- Good hermeticity
- Good granularity
- Established technology and reasonable cost
- According to fast simulation, this conservative design can fulfill design criteria

Reconstructed W mass for e⁺e⁻->W⁺W⁻ at 400GeV

(result of fast simulation in which ECAL cell size was 10cm)

```
\sigma (M<sub>jj</sub>) = 2.9GeV
```

Our previous studies

- Study on energy resolution and linearity
 Test beam measurements at KEK and FNAL
 - ECAL with 4mm-Pb/1mm-Sci :
 - $\sigma_E/E = 15.4\%/\sqrt{E} + 0.2\%$ for electrons
 - HCAL with 8mm-Pb/2mm-Sci /2mm-Acryl :

 $\sigma_E/E = 46.7\%/\sqrt{E} + 0.9\%$ for pions

 Tile/fiber calorimeter with hardware compensation has been verified to meet our design criteria for energy resolution and linearity even with current design of granularity
 Detailed simulation study must be done

HCAL studies with test beam (1996-1999)

 Good energy resolution and linearity thanks to hardware compensation

Fine granularity ECAL

- Currently studying fine granularity ECAL with Pb/Sci sampling technique
 - examine "particle flow" analysis capability
- Baseline design : tile/fiber ECAL
 - 4cmx4cmx1mm-Sci + 4mm-thick Pb
- Optional design : strip-array ECAL
 - 1cmx20cmx2mm-Sci + 4mm-thick Pb
- Shower-max detector with scinti-strips
 - Conventional WLS readout
 - Directly-attached APD readout
- Require multi-channel photon sensors operational in magnetic field

Purposes of test beam studies

(1) Tile/fiber ECAL

- examine uniformity with staggerd WLS layouts
 (2) Strip-array ECAL
 - uniformity measurement for the simulator inputs
 - measure energy, position, shower direction
 - examine 2-cluster separation and ghost-rejection
- (3) WLS-readout SHmax
 - position resolution
 - e/π separation
- (4) Direct-APD SHmax
 - examine feasibility : S/N for MIP signal
 - position resolution

Test beams for new ECAL design

- 2002 Nov.: T517 at KEK (e/μ/π, 1-4 GeV)
 tile/fiber ECAL, strip-array ECAL, scinti-strip SHmax
- 2003 Sept.: test at DESY (e, 1-6 GeV)
 scinti-strip SHmax
- 2004 March: T545 at KEK (e/μ/π, 1-4 GeV)
 - tile/fiber ECAL, strip-array ECAL, scinti-strip SHmax
 - probably the last opportunity for KEK PS beamline

(1) Tile/fiber ECAL

- Effect of small bending radius of WLS fiber ?
- Non-uniformity (around tower boundary) ?
- Only 2 super layers (2002)
- Full-depth, mega-tiles (2004)
- Multi-anode PMTs

WLS fiber configuration

• Two types of groove layout to smear non-uniformity

Roundish-square groove layout

Circular groove layout

Non-uniformity measurements

• Better uniformity with alternating layout

Spatial resolution

Position resolution of 2nd S.L.
 σ (x or y) ~ 0.7cm at 4GeV

(2) Strip-array ECAL

•Full-depth test module was constructed and tested in 2002

- •24 layers (17X₀), 6 super-layers
- ●1 layer = lead plate (4mm-thick) + x-strips + y-strips

•20cm x 1cm x 2mm scinti-strip with 1mm ϕ -WLS

Multi-anode PMTs (tentatively for beam test)

Energy resolution

If photon statistics is taken into account, beam test results are consistent with simulation.

Linearity

- Linearity : < 3.5%
 - < 1% above 2GeV</pre>
 - deviation at 1GeV : due to material in front of ECAL ?
- In good agreement with simulation

Spatial resolution

A 4GeV electron event : Position resolution Fitted to Gaussian

for 4GeV electron

Angle measurement

•Shower-axis angle is determined by linear fitting points in the first 5 S.L.

•Mean S.L. position in beam direction is calculated with weighted mean of energy deposit obeying shower curve

Angle measurement (cont.)

Offset due to mis-alignment ?

• I gnoring offset, angles are correctly measured within errors

Response uniformity

- Response in 1st super layer for 2Gev π and e
- Response-sum over strips : uniformity < 5%

2-particle separation / ghost rejection 2 cluster

- For strip-array ECAL, ghost must be rejected
 - pulse height analysis could help for rejection
- 2-particle separation and ghost rejection : study in progress

separation in 1dim. (2nd S.L.) 10.15 ± 0.2684 1.122 ± 0.2115 1cm 2cm 13.17 8.342 0.848 3cm Position [cm] 13.02 7.476 ± 18.37 11.76± 4cm

(3,4) Shower-max detectors

- For tile/fiber ECAL case, position detector at shower maximum is needed for
 - better position resolution
 - better track-cluster matching
 - good e/π separation capability
- Scinti-strip detector is a natural option for our ECAL
 - baseline design : WLS readout
 - optional design : directlyattached APD

Readout of scinti-strip

- Strip-size :
 - 20cm x 1cm x 1cm
- Conventional readout:
 - WLS + clear fiber to
 - •MA-PMTs (tested)
 - •HPDs (2004)
- Directly-attached APDs on scinti-strip (tested)
- SiPMs directly on WLS (2004)

SHmax test modules

Scinti-strips with WLS fibers

Scinti-strips with directly attached APDs

(3) Position resolution of SHmax (WLS read out)

Position resolution of SHmax (cont.)

Electron incident position is determined with weighted mean of 5 strips for figures below:

(4) Performance of APD-SHmax

• APD : Hamamatsu S8864-55

■ Active area : 5mm x 5mm, gain ~ 50

■ Temperature coefficient : ~5%/degree → corrected

MIP signal is well separated from pedestal

Spatial resolution as a function of electron energy

Photon sensors

- Multi-pixel Hybrid Photodiode (HPD)
 - DEP-HPD used for CMS-HCAL
 - We have tested Hamamatsu 64 pixels HAPD (Dr. Suyama)
 - ◆ Gain = 6 x 10⁴ (good)
 - Commercially not yet available
- Electron-bombarded CCD (EBCCD)
 - Suitable for fiber readout
 - ~ 400 fibers/device possible
 - Low gain (< 1000), but</p>
 - Sensitivity to single-photon
 - Slow read out, no timing information
- Will be tested with SHmax in 2004 test beam

Photon sensors (cont.)

• SiPM

- Micro-APD cells operated in Geiger mode
- 1ch/device, compact, cheap (a few \$/device)
- High gain (~10⁶), but significant noise rate
- Can be directly attached to WLS fiber
- ~10 SiPM from DESY to be tested in 2004 beam test
- HPK is developing a similar photon sensor

Simulation studies

- Implemented geometry for both options of ECAL into GEANT3-based full simulator
 - Detailed studies, such as shower clustering and trackcluster matching, are still under study
- Will move to GEANT4-based simulation
 - Basic implementation is done; need more refinement
- Behind schedule due to insufficient man power and need to do beam test before KEK-PS shutdown

Future plan

- Finalize ECAL hardware study in 2004
- Accelerate simulation studies
 - Full simulation in GEANT4 framework
 - Jet clustering
- Continue to study photon sensors
 SiPM, HPD, EBCCD....
- International collaboration : photon sensors, scinti. production, ...
- Engineering study

Summary

- Fine granularity ECAL based on lead/scintillator sampling is being studied :
 - established technology, reasonable cost
 - energy resolution, linearity, hermeticity
 - a series of beam tests is being carried out: tile/fiber ECAL, strip-array ECAL, SHmax Final beam test starts soon.
 - new photon sensors are being testedsimulation studies are in progress