Belle 実験における CKM angle ϕ_2 の測定

Nakadaira Takeshi

nakadair@hep.phys.s.u-tokyo.ac.jp

Univ. of Tokyo

Outline

- 1. Introduction
 - *CP* violation in $B^0 \to \pi^+\pi^-$ decay.
- 2. Analysis procedure
 - Event and time reconstruction
 - Determination of *CP*-violation parameters $A_{\pi\pi}$ and $S_{\pi\pi}$
 - Cross checks
- 3. Result
 - *CP*-violation parameters $A_{\pi\pi}$ and $S_{\pi\pi}$
 - Constraint on the CKM angle ϕ_2
- 4. Conclusion

$$CP$$
 violation in $B^0 \to \pi^+\pi^-$

Time-dependent decay ratio asymmetry

$$A_{CP}(t) \equiv \frac{\Gamma(\overline{B}{}^{0} \to \pi^{+}\pi^{-}; t) - \Gamma(B^{0} \to \pi^{+}\pi^{-}; t)}{\Gamma(\overline{B}{}^{0} \to \pi^{+}\pi^{-}; t) + \Gamma(B^{0} \to \pi^{+}\pi^{-}; t)} \xrightarrow{B^{0}}_{\Gamma} \xrightarrow{e^{-2i\phi_{M}}}_{Af} = A_{f} \cos(\Delta m_{d}t) + S_{f} \sin(\Delta m_{d}t)$$

$$\lambda_{f} \equiv e^{-2i\phi_{M}} \frac{A(\overline{B}{}^{0} \to \pi^{+}\pi^{-})}{A(B^{0} \to \pi^{+}\pi^{-})}, A_{f} = \frac{|\lambda_{f}|^{2}-1}{|\lambda_{f}|^{2}+1}, S_{f} = \frac{2 \operatorname{Im} \lambda_{f}}{|\lambda_{f}|^{2}+1}$$

Standard model predictions

研究会「質量起源と超対称性の研究」 – p.3/25

2003/3/4

Penguin pollution

In $B^0 \rightarrow \pi^+\pi^-$, Penguin contribution is not negligible.

Previous measurements at Belle

- "Study of *CP*-violating Asymmetries in $B^0 \rightarrow \pi^+\pi^-$ Decays" Phys. Rev. Lett. **89**, 0.71801 (2002)
- 45M $B\overline{B}$ (42 fb⁻¹) \cdots 162 candidates $S_{\pi\pi} = -1.21^{+0.38}_{-0.27} (\text{stat})^{+0.13}_{-0.16} (\text{syst})$ $\mathcal{A}_{\pi\pi} = +0.94^{+0.25}_{-0.31} (\text{stat}) \pm 0.09 (\text{syst})$
- Results indicated large CPV.
- Change in the new analysis.
- More data
- Improvements to the analysis
 - Better tracking algorithm
 - More sophisticated Δt resolution function
 - Inclusion of additional signal candidates by optimizing event selection

Experimental Method

Data set: $85 \times 10^6 B\overline{B}$ events (78fb⁻¹)

- 1. Reconstruction of B_{CP} with tracks identified as pion. Small BR. ($(4.4 \pm 0.9) \times 10^{-6}$ cf. 4.4×10^{-4} for $B^0 \rightarrow J/\psi K_S$) Large BG w.r.t $B \rightarrow c\bar{c}K_S$: K/π separation is important.
- 3. Measurement of Δt

used in ϕ_1 measurement.

 K/π separation

$B^0 \rightarrow \pi^+ \pi^-$ Sample

$B^0 \rightarrow \pi^+\pi^-$ reconstruction

- $B^0 \rightarrow \pi^+ \pi^-$ is reconstructed with two kinematical variables.
 - Beam-energy constrained mass($M_{\rm bc}$)

$$M_{\rm bc} = \sqrt{(E_{\rm beam}^{\rm cms})^2 - (\boldsymbol{p}_B^{\rm cms})^2}$$

• Energy difference (ΔE) $\Delta E = E_B^{cms} - E_{beam}^{cms}$

Continuum Suppression

- Continuum Background: $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$
 - Jet-like event phase $\leftrightarrow B\overline{B}$ event: spherical
 - Likelihood Ratio of Event shape: $\mathcal{LR} = \frac{L_{B\overline{B}}}{L_{B\overline{B}} + L_{a\overline{a}}}$
 - Improved Fox-Wolfram moment
 - Flight Direction of B : flat $\leftrightarrow B\overline{B} \cdots (1 \cos^2 \theta_B)$
- Requirement of $\mathcal{LR} > 0.825$
 - Reject 95% of Continuum BG.
 - Keep 53% of signal \rightarrow Efficiency 31%.

signal yield

- Signal region: $5.271 < M_{\rm bc} < 5.278 {\rm GeV}/c^2$, $|\Delta E| < 0.057 {\rm GeV}$
- Signal yields is extracted from ΔE distribution of $\mathcal{LR} > 0.825$ region.
- $B^0 \to \pi^+ \pi^- \cdots 106^{+16}_{-15}$
- $B^0 \to K^+ \pi^- \cdots 41^{+10}_{-9}$
- Continuum $\cdots 128^{+5}_{-6}$
- Part of $\mathcal{LR} \leq 0.825$ region is used in CP analysis.
- $B^0 \to \pi^+ \pi^- \cdots 57 \pm 8$
- $B^0 \to K^+ \pi^- \cdots 22^{+6}_{-5}$
- Continuum $\cdots 406 \pm 17$

Determination of $A_{\pi\pi}$ and $S_{\pi\pi}$

- Un-binned Maximum Likelihood Fit: 2 Free parameters
 - Probability Density Function ··· 4 components

 $P(\Delta t, q; \mathcal{A}_{\pi\pi}, \mathcal{S}_{\pi\pi}) = (1 - f_{\mathrm{ol}}) \{ [f_{\pi\pi} P_{\pi\pi}(\Delta t, q; \mathcal{A}_{\pi\pi}, \mathcal{S}_{\pi\pi}) \Leftarrow \text{signal} \\ + f_{K\pi} P_{K\pi}(\Delta t)] \otimes R_{\mathrm{sig}}(\Delta t) \Leftarrow B^{0} \rightarrow K^{+}\pi^{-} \\ + f_{q\bar{q}} P_{q\bar{q}}(\Delta t) \} \qquad \Leftarrow \text{Continuum} \\ + f_{\mathrm{ol}} P_{\mathrm{ol}}(\Delta t) \qquad \Leftarrow \text{Outlier}$

- $P_{K\pi}(\Delta t)$: Assume no *CP* asymmetry($A_{K\pi} = 0$).
- *f*_{ππ}, *f*_{Kπ}, *f*_{qq̄}: Event-by-event Signal/Background probability
 ← Function of ($\Delta E, M_{bc}$).
- $P_{q\bar{q}}(\Delta t)$: Continuum \leftarrow Modeled by $(\Delta E, M_{bc})$ sideband • Δt resolution, Outlier: same as ϕ_1 measurement.

Check

- B⁰ Lifetime measurement $au_{B^0} = 1.42^{+0.14}_{-0.12} \text{ ps} : B^0 \to \pi^+\pi^ au_{B^0} = 1.46 \pm 0.08 \text{ ps} : B^0 \to K^+\pi^-$ PDG2002(1.542 ± 0.016 ps) $\Rightarrow \Delta t$ measurement & Resolution is OK.
 B⁰- \overline{B}^0 mixing measurement using
 - $B^0 \rightarrow K^+ \pi^-$ sample. $\Delta m_d = 0.55^{+0.05}_{-0.07} \hbar \text{ ps}^{-1}$: $B^0 \rightarrow K^+ \pi^-$ PDG2002(0.489 ± 0.008 $\hbar \text{ ps}^{-1}$) \Rightarrow Flavor tagging is also OK.

Check (cont'd)

Continuum BG (mass sideband) has no asymmetry.

Fit result

760 Candidates ··· 391 B⁰-tagged & 369 B⁰-tagged
 163⁺²⁴₋₂₃ signal events

Statistical errors

Likelihood curves are not parabolic.

 \leftarrow Central values are outside the physical boundary.($A_{\pi\pi}^2 + S_{\pi\pi}^2 \leq 1$)

 \implies We use most probable errors from pseudo-experiments.

Check with pseudo-experiments

- How often are we outside the physical boundary? If if true values are at the boundary,
 - Prob. out side the boundary=60.1%.
 - Prob. that we have a fluctuation equal to or lager than the fit to data=16.6%

Systematics uncertainty

	${\cal A}_{\pi\pi}$		${\cal S}_{\pi\pi}$	
Source	positive error	negative error	positive error	negative error
Background fraction	+0.058	-0.048	+0.044	-0.055
Vertex reconstruction	+0.044	-0.054	+0.037	-0.012
Fit bias	+0.016	-0.021	+0.052	-0.020
Wrong tag fraction	+0.026	-0.021	+0.015	-0.016
Physics parameters	+0.021	-0.014	+0.022	-0.022
Resolution function	+0.019	-0.020	+0.010	-0.013
Background shape	+0.003	-0.015	+0.007	-0.002
Total	+0.084	-0.083	+0.083	-0.067

$$\mathcal{A}_{\pi\pi} = +0.77 \pm 0.27 (\text{stat}) \pm 0.08 (\text{syst})$$
$$\mathcal{S}_{\pi\pi} = -1.23 \pm 0.41 (\text{stat}) \stackrel{+ 0.08}{_{- 0.07}} (\text{syst})$$

Statistical Significance

Confidence region ... Feldman & Cousins method

• *CP* conserving hypothesis, $(S_{\pi\pi}, A_{\pi\pi}) = (0, 0)$ is excluded with CL=99.93%.

 $\implies 3.4\sigma$ significance for CPV

2.2σ significance
 for Direct CPV

Constraint on CKM angle ϕ_2

• Convert confidence region in $(A_{\pi\pi}, S_{\pi\pi})$ space to (ϕ_2, δ) space. (M. Gronau *et al.* Phys. Rev. **D65** 093012 (2002))

$$\mathcal{A}_{\pi\pi} = \frac{2|P/T|\sin(\phi_1 + \phi_2)\sin\delta}{\mathcal{R}_{\pi\pi}}$$
$$\mathcal{S}_{\pi\pi} = \frac{\sin 2\phi_2 + 2|P/T|\sin(\phi_1 - \phi_2)\cos\delta - |P/T|^2\sin 2\phi_1}{\mathcal{R}_{\pi\pi}}$$

$$\mathcal{R}_{\pi\pi} = 1 - 2|P/T|\cos\delta\cos(\phi_1 + \phi_2) + |P/T|^2$$

- $\delta \cdots$ Strong phase difference between tree and penguin diagrams.
- $|P/T| \cdots$ Ratio of the amplitude of penguin to tree. $\implies |P/T| \sim 0.3$ (Large theoretical uncertainty.)
- $\phi_1 = 23.5 \stackrel{+2.4}{_{-2.2}}$ [deg] \cdots Belle and BABAR

Constraint on CKM angle ϕ_2 (cont'd)

■ $78^{\circ} \le \phi_2 \le 152^{\circ}$ (95.5% CL) for $|P/T| = 0.15 \sim 0.45$

Constraint on Unitarity Triangle

- ϕ_2 constraint from the other experiments. (CKM fitter group, 2002) $-0.743 \le \sin 2\phi_2 \le 0.094 (\ge 32\% \text{CL})$ $\implies 93^\circ \le \phi_2 \le 114^\circ$ $-0.892 \le \sin 2\phi_2 \le 0.397 (\ge 5\% \text{CL})^{-1}$ $\implies 78.3^\circ \le \phi_2 \le 121.6^\circ$
- Belle $B^0 \to \pi^+\pi^-$ (78fb⁻¹) $78^\circ \le \phi_2 \le 152^\circ$ (95.5% CL) for $|P/T| = 0.15 \sim 0.45$
- Belle's ϕ_2 are consistent with the other experiments.

Comparison with other experiments

BABAR $88 \times 10^6 B\overline{B}$ pairs (B. Aubert *et al.* Phys. Rev. Lett. **89**, 281802 (2002))

$$C_{\pi\pi} = -0.30 \pm 0.25 (\text{stat}) \pm 0.04 (\text{syst})$$

 $S_{\pi\pi} = +0.02 \pm 0.34 (\text{stat}) \pm 0.05 (\text{syst})$
 $(C_{\pi\pi} = -A_{\pi\pi})$

Belle 78 fb⁻¹

$$A_{\pi\pi} = +0.77 \pm 0.27 (\text{stat}) \pm 0.08 (\text{syst})$$

 $S_{\pi\pi} = -1.23 \pm 0.41 (\text{stat}) \,{}^{+0.08}_{-0.07} (\text{syst})$

• The difference is below 3σ level \cdots within the statistical fluctuation.

Conclusion

- Evidence for *CP* violation in $B^0 \rightarrow \pi^+\pi^-$ *CP* conservation ruled out at the 99.93% CL (3.4 σ) \implies Paper is submitted to Phys. Rev. D (hep-ex/0301032)
 - Large $A_{\pi\pi}$ value indicates direct *CP* violation. More Belle data will come (× 5 by 2005) for confirmation.
- First constraints (within the SM) on the CKM angle ϕ_2 $78^\circ \le \phi_2 \le 152^\circ$ (95.5%CL) for 0.15 < |P/T| < 0.45 and $\phi_1 = 23.5^\circ$

Consistent with indirect constraints on the unitarity triangle from other experiments.

Additional support for Kobayashi-Maskawa mechanism.

$B^0 \to K^+ \pi^-$ control sample

Positively-identified kaons (reversed particle ID requirements w.r.t $B^0 \rightarrow \pi^+\pi^$ selection) $\mathcal{LR}_{\min} \leq \mathcal{LR} \leq 0.825$

 $\mathcal{LR} > 0.825$

• Total $B^0 \rightarrow K^+\pi^-$ yield: 610 events

