CDFでのBの拘異

「フレーバー物理の新展開」研究会@大洗 2010.2.23

Introduction

Tevatron as Hadronic B-factory SM、BSMに迫る ユニークな実験場 BSM直接探索や e⁺e⁻B-factoryと相補的

 あらゆるbハドロンが生成 (B⁰, B⁺, B_s, B_c, Λ_b, Σ_b, etc…)

新粒子発見から精密測定まで、
 多種多様なプログラム
 データ量増大中…まさに今が旬

 e⁺e⁻ B-factoryの 約1000倍の bハドロン生成断面積
 但しQCD背景事象は その1000倍
 ルミノシティに応じた ドリガーの改良がカギ

三宅 秀樹

Topics

■本年度の成果より、かいつまんで… ■ B中間子希少崩壞(崩壞分岐比、AFB) $\square B \rightarrow K^{(*)} \mu \mu, B_s \rightarrow \phi \mu \mu, B_{(s)} \rightarrow \mu \mu$ □ CP非対称度測定(β。) $\Box B_{s} \rightarrow J/\psi \phi$ ■ bハドロン解析(質量、寿命、偏極度) $\square \Omega_{\rm h}, Y(1s)$ don't cover $\cdots B_s \rightarrow \phi \phi$, Λ_b and so on

http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

三宅 秀樹

$B \rightarrow K^{(*)} \mu \mu, B_s \rightarrow \phi \mu \mu$

b→sll FCNC ■ New Physicsに敏感 ■ BR, A_{FB}… BR(B⁰→K^{*0}µµ)
=[1.06±0.14(stat)±0.09(syst)]×10⁻⁶
BR(B⁺→K⁺µµ)
=[0.38±0.05(stat)±0.03(syst)]×10⁻⁶
BR(3,→0µµ)
=[1.44±0.33(stat)±0.46(syst)]×10⁻⁶
□ これまでに観測された中で 最も希少なB,中間子崩壊の発見

$B \rightarrow K^{(*)} \mu \mu$: differential BR

三宅 秀樹

運動量移行の二乗(q²)の関数で 崩壊率を見る 但し q²=M_{uu}²

- より細密な理論構造の検証

6個のq² binでそれぞれ崩壊率を測定 (binの定義はBelleと同じ)

- SMと矛盾しない - B-factory実験とも矛盾せず、 同等の感度を示す

- BaBar, PRL102:091803 (2009)

- Belle, PRL103:171801 (2009)

ミューオン前後方非対称性(A_{FB})

Forward-Backward Asymmetry :

$$A_{\mathsf{FB}}(q^2) \equiv \frac{\Gamma(q^2, \cos\theta_{\mu} > 0) - \Gamma(q^2, \cos\theta_{\mu} < 0)}{\Gamma(q^2, \cos\theta_{\mu} > 0) + \Gamma(q^2, \cos\theta_{\mu} < 0)}$$

- 比を取る事で、
理論の不定性をキャンセル
- BSMの影響を敏感に反映
→BSM探索の有望なプローブ

Kppの場合, A_{FB}(Kpp)~0

三宅 秀樹

$A_{FB}(B \rightarrow K^{(*)} \mu \mu)$

フレーバー物理の新展開@大洗 2010.2.23

三宅 秀樹

$B_{s.d} \rightarrow \mu \mu$

SMにおいて極めて強く抑制 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.6 \pm 0.3) \times 10^{-9}$ $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.1 \pm 0.1) \times 10^{-10}$

A. J. Buras, arXiv:0904.4917v1

様々なNPモデルがBRの亢進を予言 **□ 特にMSSM large tan \beta \sim BR \propto (tan_{\beta})^{6}** ■ 逆にNPモデルのパラメータ空間に対する 強力な制限を与える

U

✓ Current world's best upper limit: $\sqrt{BR(B_s \rightarrow \mu\mu)} < 4.7(5.8) \times 10^{-8}$ $\sqrt{BR(B_d \rightarrow \mu\mu)} < 1.5(1.8) \times 10^{-8} 90(95)\%$ C.L. PRL 100,101802 (2008)

 $B_{s,d} \rightarrow \mu \mu$

Preliminary @3.7fb⁻¹ (CDF public note 9892)

- ✓ BR(B_s→µµ)<3.6(4.3) x10⁻⁸ 90%(95%)C.L.
- ✓ BR(B_d→µµ)<6.0(7.6) x10⁻⁹ 90%(95%)C.L.

■ NP事象が見え出す可能性

■2010年度にSMの6倍、 D0とのcombinationで4~5倍程度の 分岐比測定を期待

三宅 秀樹

CDF β_s result@2.8fb⁻¹

=7%

標準理論からのずれ: Ι.8σ

三宅 秀樹

フレーバー物理の新展開@大洗 2010.2.23

CDF note 9458 (2.8fb⁻¹) PRL100,161802 (2008) (1.35fb⁻¹)

Tevatron combination

DØ note 5928, CDF note 9787

Combined likelihood finds 2.1σ deviation from SM

データ量を増やした解析が両実験で進行中... 乞うご期待

三宅 秀樹

Bottom baryons

Bottom spectroscopyはここ数年で急速に発展
 2006 Σ_b^{(*)+} and Σ_b^{(*)-}
 2007 Ξ_b⁻
 2008 Ω_b⁻
 発見から各種性質(質量、寿命…)の測定へ

三宅 秀樹

$\Omega_{\rm b} \rightarrow J/\Psi \Omega, \Xi_{\rm b} \rightarrow J/\Psi \Xi$

DOは18 $\Omega_{\rm b}$ (15 $\Xi_{\rm b}$) 事象を観測@1.3fb⁻¹ 質量: 6165±10±13 (5774±11±15) MeV/c² PRL101,232002 (PRL99,052001) $CDFは16\Omega_{h}(66 \Xi_{h})$ 事象を観測@4.2fb⁻¹ 質量: 6054.4±6.8±0.9 (5790.9±2.6±0.8) MeV/c²

■ 寿命: 1.13^{+0.53}-0.40[±]0.02(1.56^{+0.27}-0.25[±]0.02) ps arXiv:0905.3123

Measured and Predicted Masses for the $\Xi_{\rm b}^{-}$ and $\Omega_{\rm b}^{-}$

 $\Omega_{\rm b}$

Puzzle!

个偏極度測定

次生成vector中間子偏極度測定
 NRQCDの検証(color-octet model)
 Ψ(nS)において、実験と不一致
 重いbb系であるY(nS)でなら一致するかも?

ale

$$\frac{d \Gamma}{d \cos \theta^*} \propto 1 + \alpha \cos^2 \theta^*.$$
where $\cos \theta^*$: μ^+ and α =+1: transverse α =-1: longitudinal

个偏極度測定結果

■ D0はY(1S)とY(2S)を用いて偏極度を測定@1.3fb⁻¹

- 今回、CDFはY(1S)を2.9fb⁻¹のデータで測定
 - NRQCDとの不一致

三宅 秀樹

■ CDFとD0も不一致(…BG偏極度の問題?)

■ 両実験共丫(nS)及びΨ(nS)を測定し、結果を比較する予定

■ D0からのJ/Ψ測定結果が間もなく出るそうです。

Summary

現在CDFでは様々な ボトム解析プログラムが遂行中 □希少崩壞(崩壞分岐比, A_{FB}) CP非対称度測定(β) □ bハドロン解析 (質量、寿命、偏極度) ■ その特性を生かした、 B-factory実験や直接探索実験と競合 もしくは相補的な結果が多く出ている ■ 2010年度において、統計の大幅な向上が期待される ■ 2011年度データ取得が認可されれば、さらなる精度向上

Backup

B triggers

Di-Muon

Conventional trigger
 at hadron collider

Wide mass range

Sillicon Vertex Trigger: SVT

• Online selection of displaced tracks using SVX

• UNIQUE at hadron colliders

1-Displaced track + lepton (e, μ) 120 μm < I.P.(trk) < 1mm $P_{T}(lepton) > 4 \text{ GeV}$ Semileptonic modes 2-Displaced tracks **Ρ**τ(trk) > 2 GeV 120 μm < I.P.(trk) < 1mm $\Sigma p_T > 5.5 \text{ GeV}$ fully hadronic modes

Flavor Changing Neutral Current b→s FCNC

Promising tool to search for new physics

Tree diagram is forbidden in the SM
May occur via higher order loop diagram

NP could enhance the amplitude
 Interference with SM amplitude

Various observables are available
BR, K* polarization, and A_{FB}

$B \rightarrow K^{(*)} \mu \mu, B_s \rightarrow \phi \mu \mu$

$B \rightarrow K^{(*)} \mu \mu : BR$

Relative BR : normalized BR by control channel (J/\Ph)

h=K,K*

$\frac{\mathcal{B}(B \to h\mu^+\mu^-)}{\mathcal{B}(B \to J/\Psi h)} =$	$\frac{N_{h\mu^+\mu^-}^{\rm NN}}{N_{J/\Psi h}^{\rm pre}}$	$\frac{\epsilon_{J/\Psi h}^{\rm pre}}{\epsilon_{h\mu^+\mu^-}^{\rm pre}}$	$\frac{1}{\epsilon^{\rm NN}_{h\mu^+\mu^-}}$	$ imes \mathcal{B}(J/\Psi o \mu^+ \mu^-$
--	---	--	---	---

re channel vield

Reconstruction efficiency

Absolute BR

(x10⁻⁶)

	BaBar (384M BB)	Belle (657M BB)	CDF (4.4fb ⁻¹)
К⁺µµ	0.41 ^{+0.16} -0.15(stat)±0.02(syst)	0.53 ^{+0.08} -0.07 (stat)±0.03(syst)	0.38±0.05(stat)±0.03(syst)
K* ⁰ μμ	1.35 ^{+0.40} -0.37(stat) ±0.10(syst)	1.06 ^{+0.19} _{-0.14} (stat) ±0.07(syst)	1.06±0.14(stat)±0.09(syst)
KII	0.39±0.07(stat)±0.02(syst)	0.48 ^{+0.05} - _{-0.04} (stat)±0.03(syst)	Same as K⁺µµ
K*II	1.11 ^{+0.19} -0.18(stat)±0.07(syst)	1.07 ^{+0.11} -0.10(stat)±0.09(syst)	Same as K ^{*0} µµ
10.00	PRL102:091803 (2009)	PRL103:171801 (2009)	

The best measurement for single final state!!

{Kπ, K_sπ, Kπ⁰}*{ee, μμ}
 {K, K_s}*{ee, μμ}

$A_{FB} (B \rightarrow K^{(*)} \mu \mu)$

- 1^{st} and 2^{nd} bin are merged (prior unblinding A_{FB} and F_L)

$A_{FB}(B \rightarrow K^{(*)} \mu \mu)$

H. Miyake

HCP2009, Evian, France

$B_s \rightarrow \mu \mu$: prospects

mSUGRA, D. Toback, arXiv:0911.0880v1 (2009)

Strong constraint on NP parameters : Could rule-out mSUGRA with Tevatron combination at 10fb⁻¹

$B_s \rightarrow J/\Psi \Phi @2.8 fb^{-1}$

N(R 0)CDF ~ 3200

$B_s \rightarrow J/\Psi \Phi$ Decay Rate

- $B_s \to J/\Psi \Phi$ decay rate as function of time, decay angles and initial B_s flavor: time dependence terms

$\frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}}$	$\propto A_0 ^2 \mathcal{T}_+ f_1(\vec{ ho}) + A_{\parallel} ^2 \mathcal{T}_+ f_2(\vec{ ho})$	and the second s
	$+ A_{\perp} ^{2} \mathcal{T}_{-} f_{3}(\vec{\rho}) + A_{\parallel} A_{\perp} \mathcal{U}_{+} f_{4}(\vec{\rho}) $	angular dependence terms
	$+ A_0 A_{\parallel} \cos(\delta_{\parallel})\mathcal{T}_+f_5(\vec{\rho})$	
	+ $ A_0 A_{\perp} \mathcal{V}_+ f_6(\vec{\rho}),$	terms with b _s dependence
$T_{\pm} = e^{-\Gamma}$	$\Delta \Gamma t \times [\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2)]$	The Chist
	$\mp \eta \sin(2\beta_s) \sin(\Delta m_s t)],$	terms with Dm _s dependence present
$\mathcal{U}_{\pm} = \pm e$	$\Gamma t \times [\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{*}t)]$	is determined (flavor tagged)
	$-\cos(\delta_{\perp} - \delta_{\parallel})\cos(2\beta_s)\sin(\Delta m_s t)$	
	$\pm \cos(\delta_{\perp} - \delta_{\parallel})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)$	'strong' phases:
$\mathcal{V}_{\pm} = \pm e$	$^{-\Gamma t} \times [\sin(\delta_{\perp})\cos(\Delta m_s t)]$	$\delta_{\parallel} \equiv \operatorname{Arg}(A_{\parallel}(0)A_{0}^{*}(0))$
	$-\cos(\delta_{\perp})\cos(2\beta_s)\sin(\Delta m_s t)$	$\delta_{\perp} \equiv \operatorname{Arg}(A_{\perp}(0)A_{0}^{*}(0))$
	$\pm \cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)].$	All

- Identification of B flavor at production (flagor tagging) \rightarrow better sensitivity to b_s

Present CDF result doesn't fully utilize data ⇒ No particle ID in Neural Network selection

 \Rightarrow No SSKT after 1.3 fb⁻¹

$\Delta_b \rightarrow X_c n \pi \rightarrow \Delta_c^+ \pi^- \pi^+ \pi^-$

Charm resonant decay channel

CDF observed resonant semileptonic decay channel: $\Delta_b \rightarrow X_c(\pi) \mu \nu$

PRD 79, 032001 (2009)

First observation of $\Delta_b \rightarrow \Delta_c^+ \pi^- \pi^+ \pi^-$

$B_s \rightarrow \phi \phi : gluonic penguin$

Dominated by $b \rightarrow sss$ (same as $B \rightarrow \phi K^{(*)}$)

- BR is sensitive to NP due to the loop diagram
 - Previous result: (1.4^{+0.6}-0.5±0.6) x10⁻⁵ by 8 signal@180pb⁻¹
- Various BR expectations
 - **QCDF:** $(2.18 \pm 0.1^{+3.04}_{-1.78}) \times 10^{-5}$ NPB774,64 (2007)
 - **pQCD:** $(3.53^{+0.83}_{-0.69}^{+1.67}_{-1.02}) \times 10^{-5}$ PRD76,074018 (2007)

 $BR(B_s^0 \to \phi\phi) = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$

- Updated by 2.9fb⁻¹ from 180pb⁻¹~significant improvement
- BR: Consistent with SM

Next step: Polarization measurement