Cosmology with long-lived charged particle

Kazunori Kohri (郡 和範)

Physics Department, Tohoku University

Dark Matter

http://map.gsfc.nasa.gov/media/060916

Running of Renormalization Group (RG) Equation in CMSSM

Negative Higgs mass term

Martin, "A Supersymmetry Primer"

LSP (LOSP) in CMSSM

Neutralino or Scalar tau lepton (Stau) is the Lightest Ordinary SUSY Particle (LOSP)

Ellis,Olive,Santoso,Spanos(03)

Thermal history of the Universe			
Big bang		cf) 1 GeV ~ 10 ¹³ K	
time "temperatu	re"	1 eV ~ 104K	
10^{-44} sec -10^{18} GeV	Planck scale	Inflation and Reheating	
10^{-38} sec -10^{16} GeV	GUT phase transition?		
$10^{-11} \text{ sec } -10^2 \text{ GeV}$	Electroweak phase trans	ition Baryogenesis?	
1 sec 1 MeV	Neutron decoupling	Big-Bang Nucleosynthesis (BBN)	
10^6 sec - 1 keV	Galaxy-size perturbation reenters the horizon (LSS)		
$10^{12} \text{ sec} - 0.3 \text{ eV}$	Matter-Radiation equalit	y and Photon decoupling (CMB)	
$\begin{array}{c} 13.7 \text{ Gyr} \\ (\sim 10^{17} \text{ sec}) \end{array} \qquad $	-2.7°K Presen	t	

宇宙の外には何がある?

Voltaire (1694-1778)

- 神の存在を信じたデカルトに対してヴォルテールは「この世の無という隙間がなく、物質だけで 全て満たされているのだとすると、物質とは 違うはずの神は一体どこに存在しているのか?」 とデカルトに反論した。物質世界の内と外という概 念を導入せざるを得ない。
- To a question, "What exists outside the horizon?", we can say, quantum fluctuation exists outside the horizon in modern picture of Inflationary cosmology

Stau NLSP and gravitino LSP scenario

Stable stau with weak-scale mass (<10² TeV-10⁵ TeV) was excluded by the experiments of ocean water

NLSP stau should be unstable

Bound states of stau and light elements should have been formed

Big-bang nucleosythesis (BBN)

Freezeout of neutron to proton ratio

He4 mass fraction

⁴He
$$n_{p}$$
 $n_{He} = n_n/2$

$$Y_{p} \equiv \frac{\rho_{4}_{\text{He}}}{\rho_{B}} \approx \frac{4 \times m_{N} \times n_{4}_{\text{He}}}{m_{N} \times (n_{n} + n_{p})} \approx \frac{2(n_{n} / n_{p})_{\text{freezeout}}}{(n_{n} / n_{p})_{\text{freezeout}} + 1} \approx 0.25$$

3) $T \sim 0.1 \text{ MeV} (t \sim 100 \text{ sec})$ cf) 0.1 MeV ~ 10^{9} K $p + n \rightarrow D + \gamma$ $T \ll B_D = 2.2 \text{ MeV}$ 4) T < 0.1 MeV (t > 100 sec) $n_D / n_H \sim 16.3 (T / m_N)^{3/2} \eta \exp[B_D / T] > 0.01$ $D + D \rightarrow T + p$, ³He+n $T + D ({}^{3}\text{He} + D) \rightarrow {}^{4}\text{He} + n ({}^{4}\text{He} + p)$ A little *D* and ³He are left as cold ashes

There is no stable nuclei for A=5,8. Mass 7 nuclei are produced a little.

⁴He +
$$T \rightarrow {}^{7}Li + \gamma$$

⁴He + ${}^{3}He \rightarrow {}^{7}Be + \gamma$
 $\downarrow {}^{7}Be + e^{-} \rightarrow {}^{7}Li + \nu_{e}$
⁴He + $D \rightarrow {}^{6}Li + \gamma$

SBBN

CHArged Massive Particle (CHAMP)

Kohri and Takayama, hep-ph/0605243 See also literature, Cahn-Glashow ('81)

Candidates of long-lived CHAMP in modern cosmology stau, stop ...

> "CHAMP recombination" with light elemets $T_c \sim E_{bin}/40 \sim 10 \text{ keV}$ (E_{bin} $\sim \alpha^2 \text{ m}_i \sim 100 \text{ keV}$)

See also the standard recombination between electron and proton, ($T_c \sim E_{bin}/40 \sim 0.1 eV$, $E_{bin} \sim \alpha^2 m_e \sim 13.6 eV$)) CHAMP captured-nuclei, e.g., (C,⁴He) changes the nuclear reaction rates dramatically in BBN

Pospelov's effect

Pospelov (2006), hep-ph/0605215

• CHAMP bound state with ⁴He enhances the rate $D + {}^{4}He \rightarrow {}^{6}Li + \gamma$

$D + (^{4}He, C^{-}) \rightarrow ^{6}Li + C^{-}$

Enhancement of cross section

~ $(\lambda_{\gamma} / a_{Bohr})^5$ ~ $(30)^5$ ~ 10^{7-8}

Confirmed by Hamaguchi etal (07), hep-ph/0702274

Stau NLSP and gravitino LSP Scenario

Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Relic abundance

$$Y_{\tilde{\tau}} \simeq 7 \times 10^{-14} \times \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}}\right) \qquad \tau \sim m_{3/2}^2 m_{\mu}^2 / m_{NLSP}^3 \sim 10^3 s \left(m_{NLSP} / 10^2 \text{GeV}\right)^{-5} \left(m_{3/2} / 10^4 \text{GeV}\right)$$

Lithium Problem

If we adopted smaller systematic errors for observational data of 6Li and 7Li, the BBN theory does not agree with observation of Li abundances.

Lithium 7

a factor of two or three smaller !!!

• Expected that there is little depletion in stars.

⁷Li/H = $1.26^{+0.32}_{-0.21} \times 10^{-10}$ (1 σ) log(⁷Li/H) = -9.90 ± 0.09 (1 σ)

Ryan et al.(2000)

Bonifacio et al.(2006)

Degenerate stau NLSP and neutralino LSP Scenario

Jittoh, Kohri, Koike, Sato, Shimomura, Yamanaka, 2010

 $\delta m = m_{\tilde{\tau}} - m_{\chi_0} < 0.1 {
m GeV}$ Long-lived and Charged current in BS

See also Bird, Koopman and Pospelov (07)

Relic abundance and BBN constraint in degenerate-mass scenario

Jittoh, Kohri, Koike, Sato, Shimomura, Yamanaka, 2010

Large-scale structure (LSS)

- Primordial density perturbation created in inflation is a seed of galaxy
- The perturbation of Cold Dark Matter (CDM) could evolve without interacting background plasma of photon, proton and electron
- Acoustic oscillation of CHAMP-radiation fluid could have erased the density perturbation of galaxy scale

$$k^{-1} \sim 0.1 \,\mathrm{Mpc} \left(\tau/10^6 s\right)^{1/2}$$

Shigurdson and Kamionkowski (04) Kohri and Takahashi (09)

Fraction of bound state

Most of CHAMPs are included into He4 for Y < 10¹²

They are still positively-charged!

Time-evolution of fluctuation

Horizon reentry before matter-radiation equality epoch

Ma and Bertschinger (95) See also 松原隆彦「シリーズ 現代の天文学3 宇宙論 II 宇宙の進化」

Constraint from Large-Scale Structure Kohri and Takahashi (09)

Detectability of long-lived stau in LHC

See also Takumi Ito's talk

Place additional stoppers near ATLAS or CMS to stop long-lived charged SUSY particles (even for $c \tau > 10$ m)

- 5 m Iron wall Hamaguchi, Kuno, Nakaya, and Nojiri (04)
- Water tank Feng and Smith (04)
- Surrounded rock

De Roek, Ellis, Gianotti, Mootgat, Olive and Pape (05)

See also Asai-Hamaguchi-Shirai (09) for a possibility of the detection without those additional stoppers

Summary

- The gravitino LSP with thermally produced stau NLSP scenario is severely constrained
- Long-lived CHAMPs should be also constrained by structure formation of galaxy
- Stau NLSP can be detected by LHC (See also Takumi Ito's talk)

Introduction to SUSY <u>+ Supersymmetry (SUSY)</u>

Solving "Hierarchy Problem"

Realizing "Coupling constant unification in GUT"

Lightest SUSY particle (LSP) is a good candidate for dark matter

Supergravity

- Local theory of Supersymmetry and a good candidate for quantum gravity
- Predicting a massive super partner of graviton, gravititno
- Predicting a long-lived particle, e.g., decaying NLSP gravitino into LSP neutralino, or decaying NLSP neutralino or stau into gravitino LSP
- Typically the lifetime can be longer than one second! This is dangerous for cosmology.

$$\tau \sim m_{pl}^2 / m_{3/2}^3 \sim 10^6 \operatorname{sec}(m_{3/2}^2 / 10^2 \text{GeV})^{-3}$$

Lithium 6

Asplund et al.(2006)

•Observed in metal poor halo stars in Pop II

●⁶Li plateau?

6
Li / 7 Li = 0.022 – 0.090

 7 Li/H \approx (1.1–1.5)×10⁻¹⁰ still disagrees with SBBN

Astrophysically, factor-of-two depletion of Li7 needs a factor of O(10) Li6 depletion (Pinsonneault et al '02) We need more primordial Li6?

Doppler broadening

Cold ISM

Knauth, Federman, Lambert (2006)

LP815-43

Asplund et al.(2006)

Weak interaction is in equilibrium

 $n + e^+ \leftrightarrow p + v_e$

$$\frac{n_n}{n_p} = Exp\left[-\frac{Q}{T}\right]$$

 $(Q \equiv m_n - m_p \sim 1.29 \text{ MeV})$

2) $T \sim 1 \text{ MeV} (t \sim 1 \text{ sec})$ cf) 1 MeV ~ 10¹⁰K

Feezeout of weak interaction

•Weak interaction rate

•Hubble expansion rate

 $H = \frac{\dot{a}(t)}{a(t)} \sim T^2 / M_{pl}$

 $\Gamma_{n \leftrightarrow p} \sim \sigma_{n \leftrightarrow p} n_e \sim G_F^2 T^{5}$

Time evolution of light elements

Radiative decay mode

1) Electro-magnetic cascade

$$\gamma + \gamma_{\rm BG} \to e^+ + e^-$$

$$\gamma + e^-_{\rm BG} \to \gamma + e^-, \quad e^- + \gamma_{\rm BG} \to e^- + \gamma$$

$$\gamma + \gamma_{\rm BG} \to \gamma + \gamma$$

2) many soft photons are produced

3) Photo-dissociation of light elements

 $\begin{array}{c} \mathrm{D} + \gamma \to p + n, \\ & ^{4}\mathrm{He} + \gamma \to ^{3}\mathrm{He} + n, \quad \mathrm{T} + p, \quad D + p + n \\ & ^{3}\mathrm{He} + \gamma \to \mathrm{D} + p + n, \quad \mathrm{etc.} \end{array}$

He3/D >~ O(1)

<u>Hadronic decay mode</u>

Reno, Seckel (1988)

5. Dimopoulos et al.(1989)

Two hadron jets with
$$E_{iet} = m_{\chi}/3$$

(I) Early stage of BBN (T > 0.1MeV)

Reno and Seckel (1988) Kohri (2001) Extraordinary inter-conversion reactions between n and p cf) $n + \pi^+ \rightarrow p + \pi^0$ $p + \pi^- \rightarrow n + \pi^0$

$$\Gamma_{n\leftrightarrow p} \uparrow \implies n/p \uparrow$$

Even after freeze-out of n/p in SBBN

(II) Late stage of BBN (T < 0.1MeV)

Hadronic showers and "Hadro-dissociation"

S. Dimopoulos et al. (1988) Kawasaki, Kohri, Moroi (2004)

Neutralino (bino) LSP and gravitino "NLSP"

<u>Upper bound on reheating temperature</u> in case of gravitino NLSP and neutralino LSP scenario

Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

 $T_{R} \approx 10^{9} GeV(Y_{3/2} / 10^{-12})$

$$\tau \sim 10^6 \sec(m_{3/2} / 10^2 \text{GeV})^{-3}$$

	Case 1
$m_{1/2}$	$300 { m GeV}$
m_0	$141 { m GeV}$
A_0	0
aneta	30
μ_H	$389~{\rm GeV}$
$m_{\chi^0_1}$	$117 { m ~GeV}$
$\Omega_{ m LSP}^{({ m thermal})}h^2$	0.111

Neutralino (bino) NLSP and gravitino LSP

<u>Gravitino LSP and thermally porduced</u> <u>neutralino (Bino) "NLSP" scenario</u>

Lifetime

$$\tau \sim m_{3/2}^2 m_{pl}^2 / m_{NLSP}^5$$

Relic abundance

 $Y_{\tilde{B}} = 4 \times 10^{-12} \times \left(\frac{m_{\tilde{B}}}{100 \text{ GeV}}\right)$: bulk

Feng, Su, and Takayama (03) Steffen (06) Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

No allowed region for DM density

