T2K Experiment

- Neutrino beam commissioning -

Ken Sakashita(KEK) for T2K collaboration Feb/22/2010,「フレーバーの物理の新展開」研究会2010

- 1. Introduction of T2K experiment
 - Motivation, Features and Sensitivity
- 2. Beam Commissioning [Apr '09 ~]
 - T2K v beam-line operation started
- 3. Status of hadron production measurement
- 4. Future prospects
- 5. Summary

Motivation

Next step in v Oscillation Experiment

• discover a finite θ_{13} T2K: v_e appearance

- → important role for future neutrino experiments
 - CPV in lepton sector
 - → hint on Baryon# asymmetry of Universe
 - mass hierarchy
- precise measurement
 - Is θ_{23} maximal ?

T2K: v_{μ} disappearance

0∨ββ decay exp. Tritium β decay exp. Dirac or Majorana absolute mass scale

T2K Experiment

- Super-Kamiokande(SK) as main neutrino detector 2
- Intense narrow band v_{μ} beam from J-PARC
- Neutrino energy reconstruction :
 - CCQE interactions dominate at T2K beam energy⁵⁰⁰

Off-axis beam : intense & narrow-band beam

Important to keep the beam direction stable (monitoring & controlling the beam)

Experimental Setup

- Muon monitor & on-axis neutrino detector
 - monitor direction of μ and ν_{μ} beam
 - ✓ uncertainty of beam direction to be < 1mrad
- off-axis neutrino detector
 - measure E_v distribution, flux, flavor contents
- Far neutrino detector (Super-Kamiokande)
 - measure ν beam composition after 295 km

Super Kamiokande (far detector)

- 50 kton water Cherenkov detector (fiducial volume: 22.5 kton)
 - good e-like(shower ring) / μ -like separation, $\delta E_{scale} \sim 2\%$
- New electronics & DAQ was installed in summer 2008 & stably running
- realtime transfer of T2K beam spill (GPS) information

T2K beam-line

T2K Neutrino Beam-line

construction was almost completed in April/2009 [2004-2009, 5years]

Proton beam monitor

Muon beam monitor

- measure v beam direction by muon profile every spill
- two independent monitor covering 1.5m x 1.5m area
 - Array of lonization chamber

to !

T2K beam-line この1年

2009 Feb~March preparation for first beam

- April First neutrino beam
- May Beam commissioning

June ~ November	Horn 2,3 installation
	Helium filled in TargetStation/DecayVolume
	Horn operation test in He environment

November Beam commissioning

December Beam commissioning

2010 January Beam commissioning

First T2K neutrino beam produced on April/23/2009

Muon monitor signal at 1st shot after SC turned on

proton profile just in front of the target after 9 shots beam tuning (fluorescence plate)

T2K beam-line この1年

2009 Feb~March preparation for first beam

- April First neutrino beam
- May Beam commissioning

June ~ November	Horn 2,3 installation
	Helium filled in TargetStation/DecayVolume
	Horn operation test in He environment

November Beam commissioning

December Beam commissioning

2010 January Beam commissioning

Beam commissioning

• Goal

- establish operation of beam monitors (at high beam intensity)
- tune beam orbit and beam position and size on the target
- tune neutrino beam direction by Mumon & INGRID

period	beam condition		total # of protons	highlights
2009.4~5	6 sec repetition 4~8e11 ppp (single/two bunch)	only Horn1	~ 2 x 10 ¹⁴	check all the components work as expected
2009.11	3.52 repetition ~20kW (a few shots)	no Horn	~ 8 x 10 ¹⁴	beam monitor studies First neutrino event in INGRID
2009.12	~20kW (<30min) ~50kW (a few shots)	Horn 1,2,3	~ 4 x 10 ¹⁶	3 Horns operation high power trial First neutrino event in Off-axis
2010.01	~20kW(continuous)	Horn 1,2,3	~ 5 x 10 ¹⁷	high power continuous run

Beam orbit

各点はビームモニターの測定結果

Beam size

Beam size manipulation at target demonstrated

 $\begin{array}{l} \sigma_x = 2.3 \text{mm}, \ \sigma_y = 2.0 \text{mm} \leftrightarrow \sigma_x = 3.2 \text{mm}, \ \sigma_y = 3.4 \text{mm} \ (\text{SSEM19}) \\ \text{Beam size @ 50kW trial : } \sigma_x = 6.0 \text{mm}, \ \sigma_y = 6.5 \text{mm} \ (\text{intentionally enlarged}) \\ \text{Design:} \qquad \sigma_x = 4.3 \text{mm}, \ \sigma_y = 4.3 \text{mm} \end{array}$

Beam monitor works well at high intensity

Muon monitor measurement

Stability of beam

20kW continuous operation

- Beam position from MR is stable(<0.2mm day by day)
- Stability of Muon yield <1%
- Stability of beam angle (by Mumon) is ~0.03mrad
- Beam loss is small and stable during the run

→Good beam stability

Achievements in beam commissioning

- ✓ basic functionality of beam monitors and beam-line equipment (e.g. Super-conduction combined magnet) was confirmed
- Spill information successfully transfers to SK w/o any troubles
- ☑ high intensity trial succeeded (~50kW x ~10shots)
 - beam monitor/equipment works fine & small beam loss
- ✓ beam direction was tuned
- ☑ perform continuous operation w/ 20kW
 - confirm good enough beam stability

T2K beam-line is basically ready for physics run

Hadron production measurement

Hadron production measurement

- measure hadron production in CERN NA61 experiment (data was taken in 2007, 2009)
- comparison data with T2K beam-MC
 - GEANT FLUKA (old FLUKA) used in MC

Prospects & Schedule

We aim for better sensitivity than the current limit by CHOOZ using data of physics run of 2010 as a first step

- assigned beam time from Feb/23 to June 2010
- physics run will start as soon as possible

Next : We hope to discover V_e appearance with 1-2 x 10⁷ MW*sec in a few years

• $\sin^2 2\theta_{13} = 0.05 (3\sigma \text{ discovery } @ 1MW*10^7 \text{sec})$ 0.03 (3 σ discovery @ 2MW*10^7 \text{sec})

Summary

- T2K neutrino oscillation experiment, our goals are
 - discover $v_{\mu} \rightarrow v_{e}$ appearance (a finite θ_{13}) one order of magnitude sensitivity improvement from the current limit
 - v_{μ} disappearance for precise measurement of sin²2 θ_{23} , Δm^{2}_{23}
- T2K neutrino beam-line operation starts
 - confirmed good enough stability of beam (δ beam angle << 1mrad)
 - beam commissioning almost finish \rightarrow move to physics data taking
- Aim for better sensitivity than the current limit by CHOOZ as a first step

backup

v Energy Reconstruction

• v's Energy reconstruction is possible for CC Quasi-Elastic interaction (CCQE: $v_{\mu(e)} + n \rightarrow \mu(e) + p$)

- ニュートリノビーム方向の安定性精度
 - SKでのE_v peakを<2%で抑える← Δm²₂₃の系統誤差
 - ビーム方向を±1mrad以下で抑える

θ_{13} measurement by v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}}{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}}{+8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}} \qquad \square P(\nabla) \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}} \qquad \square P(\nabla) \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21}} \qquad \text{solar} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31}} \qquad \text{matter effect} \\ (\text{small in T2K}) \end{cases}$$

$$L = 295 \text{ km}, < E_{\nu} > \sim 0.6 \text{ GeV} \qquad \delta \rightarrow -\delta, \ a \rightarrow -a \text{ for } P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) \\ \frac{aL}{4E} = 7.6 \times 10^{-5} [\text{eV}^{2}] \left(\frac{\rho}{[\text{g/cm}^{3}]}\right) \left(\frac{E}{[\text{GeV}]}\right) \frac{L}{4E} \propto D$$

- $P(v_{\mu} \rightarrow v_{e}) \rightarrow sin^{2}(2\theta_{13})$: some ambiguity due to unknown params.
- It is possible to measure CPV by comparing v and \overline{v}

Stability of beam

20kW continuous operation

- Stability of beam timing < 4 nsec during a day
- Stability of proton intensity ~3% during a day

Hardware upgrade

- collimator in the primary beam-line
- remote-controllable attenuator module
- new Horn power supply
- prepare spare target & Horn magnets
- establish remote maintenance scenario at TS

collimator

Horn/Target remote maintenance