Higgs Searches at Tevatron/CDF

Kazuhiro Yamamoto (Osaka City University) for CDF II Collaboration

YITP Workshop on Physics at High Energy Frontier Mar. 17 - 18, 2003

> Introduction SM Higgs at Tevatron/CDF MSSM Higgs at Tevatron/CDF Run I Results Run II Studies and Prospects Summary

The Standard Model and the Higgs Boson

- Extreme success of SM
 - consistent with all the data
- Higgs boson
 - last missing brick in the SM
 - indispensable for
 - generating masses of particles
 - keeping the theory renormalizable at EW scale
- Direct searches for the SM Higgs M_h > 114.4 GeV/c² (95% C.L.) (LEP HiggsWG, Jul. 2002)
 EW global fit M_h < 211 GeV/c² (95% C.L.) (LEP EWWG, Mar. 2003) Tevatron contributed to M_t and M_W

SM Higgs Production at Tevatron

- $p\overline{p}$ collision, \sqrt{s} = 2TeV
 - Gluon fusion $gg \rightarrow h$: 0.7 pb (M_h = 120 GeV/c²)

• Vector-boson associated production $q\overline{q}' \rightarrow Wh : 0.16 \text{ pb} (M_h = 120 \text{ GeV/c}^2)$ $q\overline{q} \rightarrow Zh : 0.10 \text{ pb} (M_h = 120 \text{ GeV/c}^2)$

- Huge QCD background
 - need triggering on high-p_T leptons from W/Z's or h's

SM Higgs Decay Branching Fraction

- Low mass Higgs (≤ 130GeV/c²)
 - $b\overline{b}$ is dominant \Rightarrow reconstruction of 2*b* jets
 - $gg \rightarrow h \rightarrow b\overline{b}$ swamps in QCD background
 - *Vh* production is promising $q\overline{q}' \rightarrow Wh \rightarrow \ell \nu b\overline{b}$ $q\overline{q} \rightarrow Zh \rightarrow \ell^+ \ell^- b\overline{b}, \ \nu \overline{\nu} b\overline{b}$
- High mass Higgs (130GeV/c² ~ 190GeV/c²)
 - *WW* is dominant ⇒ multi-lepton signature

 $gg \to h \to W^* W^* \to \ell^+ \ell^- \nu \overline{\nu}$ $q\overline{q}' \to Wh \to \ell^\pm \nu W^* W^* \to \ell^\pm \nu \ell^\pm \nu j j$ $q\overline{q} \to Zh \to \ell^\pm \ell^\mp W^* W^* \to \ell^\pm \ell^\pm \ell^\pm \nu j j$

Overview of Run I Searches for SM Higgs

• SM Higgs was searched for in $p\bar{p} \rightarrow Vh$ followed by $h \rightarrow b\bar{b}$

Overview of Run I searches for SM Higgs (2)

No significant excess was observed

channel	$\int Ldt (\mathrm{pb}^{-1})$	<i>b</i> -tag	Observed	Background
$\ell^+\ell^-b\overline{b}$	106 ± 4	single	5	4.0 ± 1.0
$ u\overline{ u}b\overline{b}$	87 ± 4	single	40	43 ± 5
		double	4	4.9 ± 0.6
$\ell \nu b \overline{b}$	106 ± 4	single	36	34 ± 5
		double	6	3.8 ± 0.7
$q\overline{q}^{(\prime)}b\overline{b}$	87 ± 4	double	589	594 ± 30

Much more statistics in Run II : 2 fb⁻¹ (Run IIa), ~10 fb⁻¹ (Run IIb)

CDF PRELIMINARY Run 1

- Run II Studies - Jet Energy Resolution

- Crucial for M_{jj} reconstruction (M_{bb}, M_W)
- New algorithms to improve resolution in jet energy by using tracks and shower max detector information
- Jet energy resolution improves by ~30%
- σ_M/M_{bb} improves by ~40%

- Run II Studies - *b*-jet Identification

- Identification of *b*-jets (*b*-tagging) is indispensable for the Higgs search
 - *b* collection for $h \to b\overline{b}$
 - $t\overline{t}$ suppression for $h \to WW$
- Algorithms in CDF
 - Secondary vertex tagging ε(Run I) ~50%
 - Soft lepton tagging ε(Run I) ~20%
 - Jet probability tagging ε(Run I) ~45%
- New silicon detectors
 - *b*-tagging region $|\eta| < 2$
 - 3D tracking reduces mistags
 - need good alignment
- Expected Run II ϵ ~ 60 65%

- Leptons in Run I electrons : $|\eta| < 1.35$, muons : $|\eta| < 1.0$
- Leptons in Run II • New $\begin{cases} silicon detectors \\ plug calorimeters \\ forward muon detectors \\ electrons : |\eta| < 2.0, muons : |\eta| < 1.5 \end{cases}$
 - Increased coverage by 40~50%
 - Quality of forward electrons and muons is being improved

Run II Searches for SM Higgs

- Same search modes as Run I in the low-mass region
- Run II sensitivity reaches the high-mass region
- M_h < 130 GeV/c²

 $Wh \to \ell \nu b \overline{b}$ BKG : WZ, Wb \overline{b}, t \overline{t}, single t, QCD

 $Zh \to v \overline{v} b \overline{b}$

Most sensitive in Run I BKG : ZZ, WZ, $Zb\overline{b}$, $Wb\overline{b}$, single t, QCD

 $Zh \to \ell^+ \ell^- b\overline{b}$ BKG : ZZ, Zb\overline{b}, t\overline{t}, single t

 $Vh \rightarrow q\overline{q}^{(\prime)}b\overline{b}$ Largest branching ratio Huge QCD BKG $gg \rightarrow h \rightarrow W^*W^* \rightarrow \ell^+\ell^-\nu\overline{\nu}$ BKG : WW, WZ, ZZ, t \overline{t} , $\tau^+\tau^-$ Wh $\rightarrow WW^*W^* \rightarrow \ell^\pm\nu\ell^\pm\nu jj$ Zh $\rightarrow ZW^*W^* \rightarrow \ell^\pm\ell^\pm\ell^\pm\nu jj$ Like-sign dilepton BKG : WZ, ZZ, WW, t \overline{t} , VVV, Vt \overline{t} , W/Z + jets

 Every leading BKG has >10 times larger σ·Br than the Higgs signal

Need careful optimization

• $M_h > 130 \text{ GeV/c}^2$

 \Rightarrow $S/\sqrt{B} \sim 0.5$ (Run II studies)

Run II Searches for SM Higgs (2)

Sensitivity reevaluation in progress using fine-tuned full detector simulation

Run II Searches for SM Higgs (3)

 √s = 1.96TeV M_W (GeV/c²) $\sigma(W), \sigma(Z) \sim 10\%$ higher 80.6 $\sigma(t\bar{t}) \sim 30\%$ higher LEP2 + Tevatron Run-I 100 80.5 (LEP EWWG, Mar. 2003) • With 2 fb⁻¹ (Run 2a) 250 **RUN-IIa** *≤* 500 $\Delta M_W \sim 30 \text{ MeV/c}^2$ 80.4 1000 $\Delta M_t \leq 3 \text{ GeV/c}^2$ LEP1+SLD 80.3 $\Rightarrow \Delta(\log M_h) \sim \log 2$ $(1/2M_h < M_h < 2M_h)$ Higgs Mass (GeWe) 80.2 With 10 fb⁻¹ 80.1 $\Delta M_W \sim 20 \text{ MeV/c}^2$ $\Delta M_t \leq 2 \text{ GeV/c}^2$ M_W-M_{top} contours : 68% CL 130 **140** 150 160 170 180 190 200 $\Rightarrow \Delta(\log M_h) \sim \log 1.3$ $M_{top} (GeV/c^2)$

MSSM Higgs Searches

- Two Higgs doublets provide
 - Two neutral CP-even : *h*, *H*
 - One neutral CP-odd : A
 - Two charged : H^+ , H^-
- Phenomenology as a function of tanβ (= v_u/v_d) and M_A
- Tree level mass relations $\begin{cases}
 M_h < M_A \\
 M_h < M |\cos 2\beta| < M_Z < M_H \\
 (M = \min(M_Z, M_A)) \\
 M_{H^+} > M_W
 \end{cases}$ Radiative correction gives $M_h < 135 \text{ GeV/c}^2$
- Latest LEP limit (95% C.L.)

 $M_h > 91.0 \text{ GeV/c}^2$, $M_A > 91.9 \text{ GeV/c}^2$, $\tan\beta < 0.5 \text{ or } \tan\beta > 2.4$ (hep-ex/0107030) $M_{H^+} > 78.6 \text{ GeV/c}^2$ (hep-ex/0107031)

MSSM Higgs Production - Neutral Sector -

- Small $tan\beta$:
 - ϕ 's (= h/H/A) have σ of the similar magnitude to the SM Higgs for $gg \rightarrow \phi$ $q\overline{q}^{(\prime)} \rightarrow \phi W, \phi Z$
- Large tanβ :
 - ϕW and ϕZ are suppressed.
 - Some processes:

 $\begin{array}{c} gg \rightarrow \phi \\ gg, \, q\overline{q}^{(\prime)} \rightarrow \phi b\overline{b} \\ \text{enhance } \sigma \text{ by } \sim (1/\text{cos}\beta)^2 \sim (\tan\beta)^2 \end{array}$

MSSM Higgs Production - Charged Sector -

- $M_{H^+} < M_t M_b$
 - $t \rightarrow H^+b$ dominates
 - compete with $t \rightarrow Wb$
 - large branching fraction at large tanβ and very small tanβ

- $M_{H^+} > M_t M_b$
 - radiation off a 3rd generation quark $p\overline{p} \rightarrow \overline{t}bH^+$
 - small cross section

MSSM Higgs Decays

- Neutral sector (*h*/*H*/*A*)
- bb and ττ are dominant in a wide mass range φ → bb : 90% φ → ττ : 10 %
- Charged sector (H[±])
 - τv dominates for $M_{H^{\pm}} < 200 \text{ GeV/c}^2$
 - *tb* for $M_{H^{\pm}} > 200 \text{ GeV/c}^2$
- Run II search
- $gg \rightarrow \phi \rightarrow \tau \tau$
- $gg, q\overline{q} \to \phi b\overline{b} \to b\overline{b}b\overline{b}$
- $t \to H^+ b \to \tau \nu b$

 τ detection is important as well as *b*-tagging

τ detection at CDF

• τ decay : collimated decay products

- τ triggers in CDF Run II
 - τ + missing E_T
 - lepton + track

• di-τ

Run I Results - Neutral MSSM Higgs -

• $gg, q\overline{q} \rightarrow \phi b\overline{b} \rightarrow b\overline{b}b\overline{b}$

- 4 high- E_T jets required ($E_T > 15 \text{ GeV}$)
- >=3 b-tagged jets required
- Backgrounds : QCD, $t\overline{t}$, W/Z + jets
- No excess was observed (Observed : 5, Expected : 4.6 ± 1.4 for M_φ = 70 GeV/c²)

Phys. Rev. Lett. 86 (2001) 4472.

Run I Results - Charged MSSM Higgs -

• $t \rightarrow H^+ b$

Looked for deviation of Br(t) from the SM decay Br(t) was consistent with $Br(t \rightarrow Wb) = 1.0$

MSSM Higgs Projections for Run II

MSSM Higgs Projection for Run II (2)

• Applying the SM Higgs results to the MSSM $p\overline{p} \rightarrow V\phi \rightarrow Vb\overline{b} \ (V=W,Z)$ Constraints on the MSSM parameter space

Maximal \tilde{t} -mixing case

Summary

- Tevatron Run I
 - We learned a lot to search for the Higgs at a hadron collider. Measures of analysis, backgrounds, . . .
 - \Rightarrow Constraints on the SM and MSSM Higgs bosons
- Tevatron Run II
 - Higgs search potential has significantly increased by both the accelerator upgrade and the detector upgrade.
 - We are accumulating pp
 collision data.
 Calibrations are ongoing, data quality is improving, analysis tools are being brushed up, . . .
 - We can explore the large space of the Higgs (SM and MSSM) with 2fb⁻¹ in Run IIa and ~10fb⁻¹ in Run IIb.