Tevatron Accelerator and CDF Detector

Particle Physics at High Energy Frontier

Yukawa Institute for Theoretical Physics, Kyoto University March 17-18, 2003

Hiroyuki Matsunaga (University of Tsukuba)

Tevatron

Fermilab Tevatron : R = 1 km, $E_{\text{beam}} = 1 \text{ TeV}$

Run II Upgrade

- Main Injector (150 GeV proton storage ring) replaces Main Ring : x 5
- New stochastic cooling system for antiprotons
- Permanent magnet Recycler ring for antiprotons : x 2
 - Will be integrated this summer
- Higher Energy: 900 -> 980 GeV
- Number of bunches: 6x6 (3500 ns) -> 36x36 (396 ns)
- After 2005: electron cooling etc. : x 2
- Run II started in April 2001
- Stable physics running established early 2002

Accelerator Complex

Tevatron Luminosity since June 2002

Beam Intensities

Operations Status and Plan

Parameter	Current Status	FY03 Goal	Run II Goal	(Units)
Typical Luminosity	3.2e31	6.6e31	33e31	cm ⁻² sec ⁻¹
Integrated Luminosity	6.0	12.0	70.0	Pb ⁻¹ /week
Protons/bunch	170e9	240e9	270e9	
Antiprotons/bu nch	22e9	31e9	135e9	

For Higher Luminosity

- Current problems :
- Emittance growth on transfers
- Instabilities
- Aperture limitation for beam-beam separation
- Pbar coalescing, bunch length
- Reliability

Alignment, vacuum

Integrate Recycler into operations

Run II CDF Detector

CDF Tracking system

```
Silicon : SVX, ISL, L00
```

Drift chamber : COT (Central Outer Tracker)

CDF II Silicon System

ISL Side View

Silicon Detector Status

Signal to Noise > 10

Efficiencies :

Single Hit ϵ > 99%

Silicon Performance (2)

Alignment : d0 vs. ϕ

before and after

SVX II resolution

residual $\sim 11 \mu m$

COT (Central Outer Tracker)

COT Tracking

σ = 175 μm

Maintain Run I momentum resolution

Z Resolution

ΔZ distributions for J/ ψ -> $\mu\mu$ tracks

Calorimeters

Plug Upgrade Calorimeter

Scintillator + WLS with lead(EM)/steel(Hadron)

Fast and hermetic $(1.1 < |\eta| < 3.6)$

Segmentation : $\Delta \phi = 15^{\circ}$, 7.5°, $\Delta \eta = 0.1 \sim 0.6$

Muon Detector Upgrade

Increase eta and phi coverage,
Higher rate capabilities
Better trigger shielding

CDF total muon coverage increases by about 50%

TOF Detector

TOF resolution :110ps (getting close to design 100ps)

Tag Kaons in ϕ -> KK

1.02

1.04

1.06 1.08 M(K⁺,K⁺) (GeV/c⁺)

100

0.96

0.98

Run II Trigger System

XFT (eXtremely Fast Tracker)

SVT (Silicon Vertex Trigger)

- Level 2 trigger using SVX hits and tracks from XFT trigger
- look for large d_0 in 2D
- **d**₀ resolution : σ = 48 µm incl. ~33 µm beamspot

Run IIb Upgrade Plan

SVX replacement • Single-sided • Rad-hard Central preshower detector scintillator-based TDCs for COT Level 3 trigger

Summary

- Significant luminosity improvement
 - Still need to continue progress
- CDF detector performing well
- Early physics results are ready to present