

CDF Run II 実験 現状報告1

近畿大学 理工学部 加藤幸弘 For the CDF Collaboration

March 29, 2003

- Outline of Tevatron status and CDF Run II experiment
- Status of Electroweak physics
- Status of QCD physics
- Status of Beyond SM physics
- Summary

Tevatron Upgrade

Main Injector ・反陽子生成率の向上 ・ビーム強度の増加

Recycler ring ・反陽子の再利用 ・今夏に稼動開始予定

March 29, 2003

CDF Upgrade

- ♦ SVX+ISL+Layer00
 - ·3-D reconstruction
 - extend to | = 2
- ◆ COT
- Plug EM/HAD
 'gas scintillator tiles
 TOF
 - 'new installed
- Muon system
 - extend to | | = 1.5
- Trigger system

Tevatron operations started in March 2001

- Collides 36×36 protons
 and pbars @ 980 GeV
- Luminosity goals for Run IIa: 5-8 × 10³¹ cm⁻²sec⁻¹ w/o Recycler 2 × 10³² cm⁻²sec⁻¹ with Recycler
 Achieved by Mar.2003 4.1 × 10³¹ cm⁻²sec⁻¹ in Mar. 2003 180pb⁻¹ delivered 140pb⁻¹ are on tape

March 29, 2003

Electroweak Physics

- Cross section measurement
- Forward-Backward asymmetry
- Diboson process

 $\cdot BR(W e_{e})$

Event selection

• One isolated central electron with $E_T > 25 \text{GeV} \& P_T > 10 \text{GeV/c}$ • Missing $E_T > 25 \text{ GeV}$

38628 candidates in ~ 72 pb⁻¹

Backgrounds – 6.4% by QCD

$$BR(W e_{e}) = 2.64 \pm 0.01_{stat} \pm 0.09_{sys} \pm 0.16_{lum} nb$$

$\cdot BR(W \mu_{\mu})$

Event selection

 One isolated central µ with P_T > 20 GeV/c
 Missing E_T > 20 GeV
 Remove cosmic contamination

Backgrounds – 11% by $Z^0 \quad \mu \mu$

 $BR(W \mu) = 2.64 \pm 0.02_{stat} \pm 0.12_{sys} \pm 0.16_{lum} \text{ nb}$

·BR(W

 $\cdot BR(Z^0 e^+e^-)$

 $BR(Z^0 e^+e^-) = 267.0 \pm 6.3_{stat} \pm 15.2_{sys} \pm 16.0_{lum} pb$

$\cdot BR(Z^0 \mu^+\mu^-)$

Event Selection

One isolated central µ + one isolated µ with P_T > 20GeV/c
Remove cosmic contamination

<u>1632 candidates in ~ 72 pb⁻¹</u>

Backgrounds – 0.83% by cosmic

$$\cdot BR(Z^0 \ \mu^+ \mu) = 246 \pm 6_{stat} \pm 12_{sys} \pm 15_{lum} pb$$

Results of wand z

$$R_{\ell} = \frac{\sigma(p\overline{p} \to W)\Gamma(Z)\Gamma(W \to \ell v)}{\sigma(p\overline{p} \to Z)\Gamma(W)\Gamma(Z \to \ell \ell)}$$
$$= \frac{N_{w}\varepsilon_{z}A_{z}}{N_{z}\varepsilon_{w}A_{w}}$$

$$R_{\mu} = (W \ \mu) / (Z \ \mu \mu)$$

= 10.69 ± 0.27_{stat} ± 0.33_{sys}

$$R_e = (W e) / (Z ee)$$

= 9.88 ± 0.24_{stat} ± 0.47_{sys}

March 29, 2003

$$\Gamma(\mathbf{W}) = \frac{\sigma(\mathbf{p}\overline{\mathbf{p}} \to \mathbf{W})\Gamma(\mathbf{W} \to \ell \mathbf{v})\Gamma(\mathbf{Z})}{\sigma(\mathbf{p}\overline{\mathbf{p}} \to \mathbf{Z})\Gamma(\mathbf{Z} \to \ell \ell)R_{\ell}}$$

Electron:
$$(W) = 2.29 \pm 0.06_{stat} \pm 0.10_{sys}$$
 GeV
Muon: $(W) = 2.11 \pm 0.05_{stat} \pm 0.07_{sys}$ GeV
 $(W) = 2.118 \pm 0.042$ GeV (PDG fit)

$$\frac{\Gamma(Z \to ee)}{\Gamma(Z)} = 3.3632 \pm 0.0042 \% \text{ (PDG)} \qquad \Gamma(W \to ev) = 226.4 \pm 0.3 \text{ MeV} \text{ (PDG)}$$
$$\frac{\sigma(p \,\overline{p} \to W)}{\sigma(p \,\overline{p} \to Z)} = 3.39 \pm 0.03 \text{ (hep - ph/0211080)}$$

A_{FR} with Z^0 **e * e ***

Forward-Backward charge asymmetry

$$\frac{\mathrm{d}\,\sigma\,(\overline{q}\,q \to Z / \gamma \to \ell^+ \ell^-)}{\mathrm{d}\,\cos\,\theta}$$
$$= A\,(1 + \cos^2\,\theta) + B\,\cos\,\theta$$

 Direct probe V,A Constrains the properties of new heavy neutral gauge bosons

 $A_{FB} = \frac{N_F - N_B}{N_F + N_B}$

Event Selection

- Two isolated high P_T central e or µ with opposite charge
 Missing Et > 25 GeV
- •Z veto (76<M_{ll}<106 GeV/c²)

· Jet veto

Source	ee	μμ	eμ	11
Backgrounds	0.29 ± 0.13	0.46 ± 0.18	0.77 ± 0.60	1.52 ± 0.64
WW II	0.54 ± 0.12	0.65 ± 0.14	1.55 ± 0.34	2.74 ± 0.59
Data	1	0	1	2

March 29, 2003

QCD Physics

• Inclusive jet cross section

• Dijet mass

- Study of jet shapes and E-flows in inclusive dijet production
- Diffractive dijet production

Inclusive jet cross section

March 29, 2003

Inclusive jet cross section

Systematic uncertainties

Run II data extends Run I results by ~ 150 GeV

Largest uncertainty energy scale (~5%)

Fit to cross section

Best fit to central jet cross section provide by CTEQ6.1 PDF

Dijet mass

(pb/GeV) **Dijet event selection** CDF RUN 2 PRELIMINARY ♦ Two highest E_T jets RUN 2, VS = 1.96 TeV, 75 pb⁻¹ SECTION RUN 1, Vs = 1.80 TeV, 106 pb within | | < 2.0 10 *| < 2/3 ♦ COS SSOULO¹ $(\cos * = \tanh([1 - 2]/2))$ 10 cos θ* <2/3, |η.,ετ <2 103 Not corrected for resolution 10⁴ 400 600 800 1000 1200 1400 200 DIJET MASS (GeV) Larger dijet mass events than Run I

Dijet mass

Dijet mass

Search for new particles decaying dijets

Search for New Particles Decaying to Dijets

Beyond SM physics

Search for LeptoQuarks

- Search high mass dilepton events
- Search for high-E_T di-photon events
- Charged massive particles
- Search for doubly-charged Higgs

Search for Leptoquarks

 Leptoquarks(LQ) generally pair produced and to decay into a lepton and a quark of the same generation

=Br(LQ lq) is modeldependent

Search for (LQ)(LQ) (ej)(ej) (Assuming =1)

Search for LeptoQuarks in the eejj channel

Event Selection

- Two central e with E_T>25GeV
- Two jets with E_T^{j1} >30GeV, E_T^{j2} >15GeV
- Removal Z ee
 (76<M_{ee}<106 GeV/c²)
- $E_T(e_i) > 85 \text{ GeV}$
- $E_T(j_i) > 85 GeV$
- $(E_T(e_i)+E_T(j_i)) > 200 \text{ GeV}$

0 event in ~ 72pb⁻¹

 $M_{LQ} < 230 \text{ GeV/c}^2 \text{ excluded } @95\% \text{ C.L}$

High mass dilepton events

Search for new particle productions in high mass dilepton events

New neutral gauge boson Z'

various extensions of the SM parameter M(Z')

Randall–Sundrum Graviton G (ExtraDimensions)

- Excited graviton 5-dimensions and spin-2 bosons
- Free parameters: M_G and k/M_{plank}

High mass dilepton events

— Drell-Yan production spectrum –

Data consistent with SM background

High mass dilepton events

March 29, 2003

- Limits on Randall-Sundrum Graviton -

- dielectron -

- dimuon -

March 29, 2003

Summary

- CDF Run II 実験は、2001年3月より始まり順調に稼動して、2003年3月までに約140pb⁻¹のデータを取得した。
- 今夏には、~ 200pb⁻¹のデータを用いた 新しい結果を発表する予定。

乞うご期待!!