

CDF実験のヒッグス粒子探索の結果

清矢 良浩 (大阪市立大学高エネルギー物理学研究室)

物理学会,岡山大学津島キャンパス 2010年3月20日

Outline

- Standard Model and Higgs Boson
- Tevatron and CDF Detector
- SM Higgs Searches at CDF
- Future Prospects
- Conclusions

Standard Model and Higgs Boson

Standard Model Higgs Boson

Standard Model

- Gauge theory: $SU_C(3) \otimes SU_L(2) \otimes U_Y(1)$
- Left (right) handed fermion = SU_L(2) doublet (singlet)

<u>Higgs boson</u>

- Elementary complex scalar
- No color, $SU_L(2)$ doublet, Y = +1/2
- Responsible for the spontaneous breaking of the electroweak (EW) gauge symmetry
 - Gauge boson masses
- Physical state

T₃ = -1/2, Y = +1/2, Q = 0

- Also assumed to generate fermion masses
- No experimental confirmation

Status of SM Higgs

Tevatron and CDF Detector

Tevatron Accelerator

- Proton-antiproton collider at $\sqrt{s} = 1.96 \text{ TeV}$
- 36×36 bunch, bunch space 396 ns
- Np~10000e9, Npbar~3000e9, typical peak luminosity ~ 0.3 nb⁻¹/s
- Store duration ~ 12 hrs
- Two major detectors at collision points : CDF and DØ

Tevatron Luminosity Progress

Proton-Antiproton Collisions

CDF Experiment

		Integrated luminosity	Collaboration size	
1981.01	TDR		87	
1984–85	Beam tests			
1985.10	First collisions	~20 events		
1987.01–87.05	Test run	25 nb ⁻¹	190	
1988.06-89.05	Run 0	4.4 pb ⁻¹		
1990–92	Beam tests		$\sqrt{s} = 1.8 \text{ Te}$	
1992.04–93.05	Run Ia	19 pb ⁻¹	358	
1993.12–95.08	Run Ib	80 pb ⁻¹ 106 pb ⁻¹		
1995.10–96.02	Run Ic	7 pb ⁻¹ ∫		
–2000.Fall	Upgrades			
2000.Fall-01.Spring	Comissionning			
2001.03-	Run II		~750 √s = 1.96 Te	

CDF Detector

Calorimeters: projective tower geometry

CDF Detector

CDF Detector

SM Higgs Searches at CDF

SM Higgs Production at the Tevatron

SM Higgs Production at the Tevatron

Higgs Decays

Search Channels

$$\ell = e, \mu$$

Higgs production	Higgs decays		
and W/Z decays	h→bb	h \rightarrow WW \rightarrow (ℓ v)(ℓ v)	
h	Too large QCD BG	2ℓ (opposite-sign=OS) + missing E_T	
Wh→(ℓv)h	ℓ + missing E _T + 2b	2ℓ (OS)/ 2ℓ (like-sign=LS)/ 3ℓ + missing E _T	
$Zh ightarrow (\nu \nu)h$	Missing E _T + 2b	2ℓ (OS) + missing E _T	
$\rightarrow (\ell \ell)h$	2ℓ (OS) + 2b	Multilepton + missing E _T	
qqH	Too large QCD BG	2ℓ (OS) + missing E _T	

CDF Papers of SM Higgs Searches

	Wh $\rightarrow (\ell v)$ (bb)	PRL 79, 3819	1997	109 pb ⁻¹
Run I	Vh \rightarrow (jj)(bb)	PRL 81, 5748	1998	91 pb⁻¹
Run II	$Zh \rightarrow (\ell\ell)(bb), (vv)(bb)$	PRL 95, 051801	2005	106 pb ⁻¹
	Wh $\rightarrow (\ell v)$ (bb)	PRL 96, 081803	2006	320 pb ⁻¹
	$h \rightarrow WW$	PRL 97, 081802	2006	360 pb ⁻¹
	Wh $\rightarrow (\ell v)$ (bb)	PRL 100, 041801	2008	1000 pb ⁻¹
		PRD 78, 032008	2008	1000 pb ⁻¹
	$Zh \rightarrow (vv)(bb)$	PRL 100, 211801	2008	1000 pb ⁻¹
	$Zh \rightarrow (\ell\ell)(bb)$	PRL 101, 251803	2008	1000 pb ⁻¹
	$h \rightarrow WW$	PRL 102, 021802	2009	3000 pb ⁻¹
	Wh \rightarrow ($\ell \nu$)(bb)	PRD 80, 012002	2009	1900 pb ⁻¹
	Wh \rightarrow ($\ell \nu$)(bb)	PRL 103, 101802	2009	2700 pb ⁻¹

Event selection

- Trigger selection
- Kinematical and geometrical acceptance
- Particle identification
- Topological selection
- Efficiency and background estimation
 - ϵ = 0.2 ~ 2% from σ (h)·B(h→XX)
 - Δε/ε = 10~20%
 - △B/B = 10~20%
- Result
 - Limit on the production cross section
 - Use distributions of some variables
 - Binned maximum likelihood method
 - Bayesian interpretation in most cases

Bayesian

$$p(n | S, B) = \frac{e^{-\mu} \mu^n}{n!}, \quad \mu = S + B = L(\sigma B_F)\varepsilon + B$$

$$p(n_{obs} | S, B) \rightarrow p(S, B | n_{obs})\pi(S, B) dS dB$$
Posterior probability density
Prior probability density
$$p(S | n_{obs}) dS = \int dB p(S, B | n_{obs})\pi(S, B)$$

$$p(S | n_{obs}) dS = \int dB dS p(S, B | n_{obs})\pi(S, B)$$
Marginalization
Nuisance parameter

For distributions

$$\prod_{i=\text{bin}} p(n_i | S_i, B_i)$$

Combining different channels

$$(\prod_{i=\text{channel}} p(n_i | S_i, B_i)) \pi(B)$$
Common (correlated) nuisance parameters

(1) Wh→(ℓv)(bb), 2006

- L = 320 pb⁻¹
- High p_T inclusive lepton trigger
- Lepton + 2j + missing E_T signature
- ≥1b tagging
 - Secondary vertex
 - Semileptonic decay w/ large d₀
- S(m=115) ~ 2 fb, B ~ 550 fb
 - W+bb dominant
 - S/√B/√L~0.09
- M_{bb} distribution for limits
- b jet specific energy correction
- Expected limit ~ 6 pb (m=115)
 - **ε ~ 1.5%**, **Β ~ 175**
 - S₉₅ ~ 6×320×0.015 ~ 29 ev
 - 29/√175 ~ 2.2

Expected limit

- Frequentist view
- BG-only pseudo-experiments \rightarrow limits (median)

(1) h→WW, 2006

- **360 pb**⁻¹
- Triggers
 - High p_T inclusive lepton trigger
 - Plug electrons + missing E_T trigger
- Plug electrons
- Topological cut
 - Drell-Yan veto
 - M_{ℓℓ}>16 GeV (cc/bb resonance veto)
 - M_{ℓℓ}<m_h-5 GeV
 - Large missing E_T
 - Fake missing E_{τ} veto (Z $\rightarrow \tau \tau$ veto)
 - Jet veto (tt veto)
- S(m=160) ~ 1.6 fb, B ~ 39 fb
 - WW dominant
 - S/√B/√L~0.26
 - $\Delta \phi_{\ell \ell}$ distribution for limits

(2) Wh $\rightarrow (\ell v)(bb)$, 2008

(1) Zh→(vv)(bb), 2008

- L = 1 fb⁻¹
- Missing E_T trigger
- Include missing lepton + bb from Wh
- 2 or 3 jets
- ≥1b tag
- M_{bb} distribution for limits
- Introduction of control regions (CR)
 - Check of ε and BG estimation
 - Calibration of ε and BG
 - CR in this analysis
 - CR1 = Multijet signature
 - CR2 = One lepton
- S(m=115) ~ 1.6 fb, B ~ 260 fb
 - QCD (fake missing E_T) dominant
 - S/√B/√L~0.10
 - Sensitivity (vv)(bb) ~ (lv)(bb)

(1) Zh→(ℓℓ)(bb), 2008

- L = 1 fb⁻¹
- Higi p_T inclusive lepton trigger
- Added plug electrons as the 2nd lepton
- NN jet energy correction
 - Mass resolution $18\% \rightarrow 11\%$
- 1b ⊕ 2b
- 2D NN outputs for limits
 - Zh vs. Zbb
 - Zh vs. tt
- S(m=115) ~ 0.81 fb, B ~ 110 fb
 - S/√B/√L~0.08 (Run I ~ 0.10)
 - Worse than Run I
 - But expected limit is ~ 4 times better than L scaling

(2) h→WW, 2009

- 3 fb⁻¹
- More lepton categories
 - MIP tracks
 - Isolated tracks passing detector cracks
- Matrix-element-based probability (ME)

$$p(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{LO}}{d\vec{y}} \varepsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$$

ME Efficiency Detector response

- High S/B ⊕ Low S/B
- NN for limits
- S(m=160) ~ 3.9 fb, B ~ 260 fb
 - S/√B/√L~0.24 (cf. 0.26)
 - Expected limit ~50% improvement other than L scaling

(2) h→WW, 2009

(3) Wh $\rightarrow (\ell v)(bb)$, 2009

- Added missing E_T + plug electron trigger
- Added plug electrons
- Add d₀-based b-tagging
- NN for limits
- S(m=115) ~ 2.3 fb, B ~ 660 fb
 - S/√B/√L~0.09 (cf. 0.10)
 - Expected limit ~ 40% improvement

(4) Wh→(ℓv)(bb), 2009

- L = 2.7 fb⁻¹
- Added missing E_T + 2j trigger
- Isolated tracks as leptons
 - 30% acceptance gain
- ME→BDT
 - 15% sensitivity gain
- NN + MEBDT → NN (Super discriminant)
 - 15% sensitivity gain
- S(m=115) ~ 3.2 fb, B ~ 820 fb
 - S/√B/√L~0.11 (cf. 0.09)
 - Expected limit ~ 50% improvement

(2) $Zh \rightarrow (vv)(bb)$, now

L = 3.6 fb⁻¹

- Missing p_T to reduce QCD
- Added d₀-based b tagging
- Two staged NN
 - QCD rejection
 - Other BG

(2) $Zh \rightarrow (vv)(bb)$, now

(5) Wh $\rightarrow (\ell \nu)$ (bb), now

- Two analyses to be combined
 - NN
 - ME

NN

- L = 4.3 fb⁻¹
- Not much new things
- Bayesian NN
- S(m=115) ~ 3.2 fb, B ~ 930 fb
 - S/√B/√L~0.11

ME

- L = 4.8 fb⁻¹
- Not much new things
- Added 3 jets
- 2j ⊕ 3j
- S(m=115) ~ 3.9 fb, B ~ 1200 fb
 S/√B/√L~0.11

CDF Run II Preliminary (4.3 fb⁻¹)

(5) Wh $\rightarrow (\ell v)(bb)$, now

M _H = 115 GeV/c²	Expected limit	Observed limit	Luminosity
CDF (NN)	$4.0\times\sigma_{SM}$	$5.3\times\sigma_{SM}$	4.3 fb ⁻¹
CDF (ME)	$3.8\times\sigma_{SM}$	$3.3\times\sigma_{\text{SM}}$	4.8 fb ⁻¹

(2) $Zh \rightarrow (\ell\ell)(bb)$, now

- 4.1 fb⁻¹
- Added the trackless trigger
- ≥2j
- High S/B ⊕ low S/B
- Isolated tracks

- b-tagging
 - NN-based filter
 - d₀-based tagger
- ME \rightarrow 2D NN

(2) $Zh \rightarrow (\ell\ell)(bb)$, now

For M_H = 115 GeV/c² w/ 4.1 fb⁻¹ Expected limit : $6.8 \times \sigma_{SM}$ Observed limit : $5.9 \times \sigma_{SM}$

- S(m=115) ~ 0.88 fb, B ~ 140 fb
 S/√B/√L~0.07 (cf. 0.08)
- +16% improvement

(3) $h \rightarrow WW$, now

- 4.8 fb⁻¹
- 0j ⊕ 1j ⊕ ≥2j
- ME-NN for 0j
- Added Vh, qqh
- Lowered $M_{\ell\ell}$ cut
- Likelihood electron ID
- NN for each sub-sample

(3) $h \rightarrow WW$, now

For M_H = 165 GeV/c² w/ 4.8 fb⁻¹ Expected limit : $1.21 \times \sigma_{SM}$ Observed limit : $1.23 \times \sigma_{SM}$

S(m=160) ~ 6.6 fb, B ~ 360 fb S/√B/√L~0.35 (cf. 0.24)

+44% improvement

CDF SM Higgs Combination

CDF combined results with L = 2.0 - 4.8 fb⁻¹

Included channels

 $\begin{array}{cccc} WH & vbb (4.3 \ fb^{-1}) \\ VH & \not\!\!\!E_T + bb (3.6 \ fb^{-1}) \\ ZH & bb (4.1 \ fb^{-1}) \\ VH, VBF, ggH \\ & 2 \ jets + \tau\tau \ (2.0 \ fb^{-1}) \\ VH & 2 \ jets + bb (2.0 \ fb^{-1}) \\ ggH & WW^* & v \ v \ (4.8 \ fb^{-1}) \\ VH & VWW^* \ (4.8 \ fb^{-1}) \end{array}$

For $M_H = 115 \text{ GeV/c}^2$ Expected limit : $2.38 \times \sigma_{SM}$ Observed limit : $3.12 \times \sigma_{SM}$ For $M_H = 165 \text{ GeV/c}^2$ Expected limit : $1.19 \times \sigma_{SM}$ Observed limit : $1.18 \times \sigma_{SM}$

Tevatron SM Higgs Combination

- Combined results of CDF and DØ with L = 2.0 5.4 fb⁻¹
 - > Systematics correlation b/w experiments are taken into account.

Observed (expected) limit at $M_H = 115 \text{ GeV/c}^2 : 2.70 (1.78) \times \sigma_{SM}$ Excluded mass range at 95% C.L. : 163 - 166 GeV/c² (Expected exclusion range : 159 - 168 GeV/c²)

arXiv:0911.3930[hep-ex]

as of November 2009

Future Prospects

Luminosity Prospects

SM Higgs Sensitivity Prospects

For $M_{\rm H} = 115 \text{ GeV/c}^2$

For $M_{\rm H} = 160 \ {\rm GeV/c^2}$

Analysis improvements help the sensitivity increase better than 1/sqrt(L).
 Expect to reach 115GeV Higgs with 6~10 fb⁻¹

SM Higgs Sensitivity Prospects

If CDF and D \oslash analyze 7 fb⁻¹ each, m_h < 180 GeV/c² would all be excluded if not there

Conclusions

- Tevatron and the CDF detector are performing very well.
 - Delivered 8.2 fb⁻¹, Acquired 6.8 fb⁻¹, Analyzed 5.4 fb⁻¹
 - Expect ~ 9 fb⁻¹ by the end of FY10
 - > We all thank accelerator people for excellent beam !
- SM Higgs searches are in progress in various production and decay channels.
- Increasing luminosity, analysis improvements, ... We can go further !

Backup Slides

Spring 2009 Result

Multivariate Techniques

Both experiments use advanced multivariate techniques, which combine information from kinematical, topological and particle identification variables, to enhance the signal/background discrimination.

Higgs Bosons Beyond the SM

MSSM Higgs at the Tevatron

- Two-Higgs-doublet fields provide
 5 physical Higgs bosons.

 - 2 charged : H[±]
 - Phenomenology described at tree level by tanβ and M_A.
- Neutral Higgs
 - Coupling to d-type quarks enhanced by $\tan\beta \Rightarrow \sigma_{\phi} \propto \tan^2\beta$
 - Br(φ → ττ) ~10%, Br(φ → bb)
 ~90% for low and intermediate masses
- Charged Higgs
 - For (M_{H⁺} < M_t M_b), a top quark can decay into H[±]b.

Tevatron has sensitivity for some MSSM scenarios.

MSSM Neutral Higgs : $\phi \rightarrow \tau^+ \tau^-$

MSSM Neutral Higgs : $\phi b \rightarrow bbb$

220

200

1σband

2σband

observed limit

200

 m_{Λ} (GeV/c²)

MSSM Charged Higgs

- Search for H[±] in top decays
 - $t \rightarrow H^{\pm}b$
 - $H^{\pm} \rightarrow cs$ (for small $tan\beta$)
 - $H^{\pm} \rightarrow \tau \nu$ (for large tan β)
 - If H[±] exists, there would be deviation from the SM prediction for the final states of tt decay.

Fermiophobic Higgs

- In some BSM models, Higgs couplings to fermions are suppressed.
 - \Rightarrow Higgs decays to vector bosons are significantly increased.
 - Low mass region : $H \rightarrow \gamma \gamma$
 - High mass region : $H \rightarrow WW/ZZ$
- Benchmark scenario
 - No fermion couplings and SM couplings to vector boson

