Bursts of star formation and gas outflows in galaxies

Dragan Salak

University of Tsukuba

Faculty of Pure and Applied Sciences

September 29, 2014

Outline

- 1. Star formation and starburst galaxies
- 2. Superwinds and galaxy evolution
- 3. Case study
 - Observations of the galaxy M82

Star formation in galaxies

Spiral galaxy M51 (Credit: HST)

Baryon flow in a typical disk galaxy

Mass budget in our Galaxy:

- Dark matter
- Baryons (~10%) = visible matter

~90% of baryons in stars, ~10% in interstellar medium (ISM)

Star formation feedback in starburst galaxies

Superwinds and galaxy evolution

Multi-phase outflows: M82 case study

Observations of molecular gas

How is molecular gas affected by the superwind? Interstellar molecular gas is cooled by CO (J=1 \rightarrow 0) λ =2.6 mm (J : rotational quantum number)

Antenna diameter = 45m \rightarrow high sensitivity Array of 6-m and 10-m antennas \rightarrow high angular resolution

Molecular gas outflow

Salak et al. (2013)

Mutchler et al. (2007)

Observations with Nobeyama 45-m telescope

• Large-scale molecular gas outflow >2 kpc above the galactic plane (1 pc = 3.1×10^{13} km)

High-resolution CO observations

CARMA + Nobeyama 45m map highest-resolution CO map (CANON project) (2.8 x 2.5 arcsec² equivalent to ~45 pc)

Close-up of the molecular gas outflow

Molecular gas outflows launched from the 300-pc ring

- → How does the superwind affect star formation?
 → Can molecular gas escape?
- Outflow velocity from CO spectra
- H₂ gas mass from CO line flux
- Mass outflow rate

redshift

blueshift

CO gas line-of-sight velocity

Mean outflow velocity ~100 km/s

Superwind and the evolution of ISM in M82

Molecular gas outflow:

Mean velocity	100 km/s	< escape velocity (~300 km/s)
Mass outflow rate	30 M _{sun} /yr	≥ star formation rate (~10 M _{sun} /yr) (e.g. Förster Schreiber et al. 2003)
Momentum rate =(mass outflow rate) x (vel	3 x 10 ³ M _{sun} /yr km/s ocity)	~ starburst input (radiation pressure, supernovae)

→ Molecular gas blown out within $<10^7$ yr → Strong suppression of star formation

Conclusions

- Star formation in starburst galaxies triggers the superwind feedback
- Superwinds play essential role in galaxy evolution
- Observations of M82 show outflow of hot and cold gas
 - Molecular gas will be depleted within <10⁷ Myr
 - Star formation will be suppressed by the superwind
- Observations of galactic superwinds with new instruments (e.g., ALMA in Chile) are promising to probe starburst feedback across cosmic history

Thank you!