Yosuke Watanabe (Tsukuba University) ## Physics motivation - Charm baryons - Baryons containing at least one charm quark, such as Λ_c^+ (cud), Ξ_c^0 (csd), Ξ_{cc}^{++} (ccu). - Most of the cross section measurements are still limited to mesons at LHC - Experimentally challenging: small signal-to-background ratio - Understanding of the hadronization mechanism from QGP - Different from vacuum fragmentation? - Recombination with surrounding light quarks in QGP? #### Charm baryon in heavy ion collisions - STAR collaboration reported the first measurement of Λ_c in heavy ion collisions at Quark Matter 2017 (held in Chicago) - Significant enhancement w.r.t. PYTHIA is observed - Measurements in pp and p-Pb collisions offer a crucial reference for the measurements in heavy ion collisions ### pp and p-Pb collisions - □ Fragmentation in to charm baryons are well studied in e⁺e⁻ collisions - Do we expect the fragmentation to be the same in ee and pp/p-Pb collisions? - Multiple parton interaction (MPI) and color reconnection (CR) could increase the baryonto-meson ratio - pPb collisions are further affected by cold nuclear matter effect or small "QGP" effects J. R. Christiansen and P. Z. Skands, JHEP 08 (2015) 003 , $http://home.thep.lu.se/\sim torbjorn/talks/ChristiansenKarlsruhe14.pdf$ ### **ALICE** detector # Charmed baryon @ ALICE ## p_{T} -differential cross sections ## Model comparisons # $R_{\rm pPb}$ $$\frac{\text{Yield in P + A}}{\langle N_{\text{coll}} \rangle \times \text{Yield in p + p}}$$ # Λ_c/D^0 ratio, Ξ_c^0/D^0 ratio