

Yosuke Watanabe (Tsukuba University)

Physics motivation

- Charm baryons
 - Baryons containing at least one charm quark, such as Λ_c^+ (cud), Ξ_c^0 (csd), Ξ_{cc}^{++} (ccu).
 - Most of the cross section measurements are still limited to mesons at LHC
 - Experimentally challenging: small signal-to-background ratio
- Understanding of the hadronization mechanism from QGP
 - Different from vacuum fragmentation?
 - Recombination with surrounding light quarks in QGP?

Charm baryon in heavy ion collisions

- STAR collaboration reported the first measurement of Λ_c in heavy ion collisions at Quark Matter 2017 (held in Chicago)
 - Significant enhancement w.r.t. PYTHIA is observed
- Measurements in pp and p-Pb collisions offer a crucial reference for the measurements in heavy ion collisions

pp and p-Pb collisions

- □ Fragmentation in to charm baryons are well studied in e⁺e⁻ collisions
- Do we expect the fragmentation to be the same in ee and pp/p-Pb collisions?
 - Multiple parton interaction (MPI) and color reconnection (CR) could increase the baryonto-meson ratio
- pPb collisions are further affected by cold nuclear matter effect or small "QGP" effects

J. R. Christiansen and P. Z. Skands, JHEP 08 (2015) 003 , $http://home.thep.lu.se/\sim torbjorn/talks/ChristiansenKarlsruhe14.pdf$

ALICE detector

Charmed baryon @ ALICE

p_{T} -differential cross sections

Model comparisons

$R_{\rm pPb}$

$$\frac{\text{Yield in P + A}}{\langle N_{\text{coll}} \rangle \times \text{Yield in p + p}}$$

Λ_c/D^0 ratio, Ξ_c^0/D^0 ratio

