

Exploring the QGP with Jets at ALICE

Oliver Busch

for the ALICE collaboration

Outline

- introduction
- results from pp collisions
- jets in heavy-ion collisions
- results from Pb-Pb collisions
- outlook: LHC run 2

Introduction

Jets: seeing quarks and gluons () CIRFSE Jets: seeing quarks and gluons

• jet: collimated bunch of hadrons

 quasi-free parton scattering at high Q²: the best available experimental equivalent to quarks and gluons

Jet fragmentation

- initial hard scattering: high-p_T partons
- cascade of gluons: parton shower
- at soft scale ($o(\Lambda_{QCD})$): hadronization

Fragmentation = Parton shower + hadronization

Jet reconstruction

- Establish correspondence between detector measurements / final state particles / partons
- two types of jet finder:
 - iterative cone
 - sequential recombination (e.g. anti-kT)
- resolution parameter R

LHC aerial view

Jets at ALICE (LHC run 1)

- charged particle tracking:
 - Inner Tracking System (ITS)
 - Time Projection Chamber
 - full azimuth, |η |< 0.9 pT > 150 MeV/c
- EMCal :
 - neutral particles
 - Δφ = 107°, |η|<0.7 cluster ET > 300 MeV

- jet trigger with EMCal and TRD
- `charged' (tracking) jets and `full' jets
- full jets from charged particle tracking and EM energy: conceptually different and complementary to traditional approach

Results from pp collisions

Full jets in pp at \sqrt{s} = 2.76 TeV

- good agreement to NLO calculations for R = 0.2 and R = 0.4
- reference for Pb-Pb at same energy

Phys. Lett. B 722 (2013) 262

pp charged jet cross-sections

minimum bias collisions at $\sqrt{s} = 7$ TeV

R = 0.6

• measured in minimum bias collisions at \sqrt{s} = 7 TeV

R = 0.4

 good agreement with ATLAS charged jet measurements (despite slightly different acceptance and track pT range)

- $z^{ch} = p_{\rm T}^{\rm particle}/p_{\rm T}^{\rm jet,ch}$ distributions of charged particles in charged jets
- for z > 0.2 distributions consistent for all jet p_T: 'scaling'
- bulk production at low z:
 ~ 5-10 charged particles per jet

PID in jets : `TPC coherent fit'

- particle identification via specific ionization in TPC ('dE/dx'):
- TPC coherent fit: use energy loss model parameterization as input, adjust model parameters and particle fractions `on the fly' 140 during fit 120
- regularization requiring continuity of particle fractions
- complementary and consistent: multi-template fit

Particle identified fragmentation

- identified charged hadrons in charged jets at \sqrt{s} = 7 TeV
- π , K, p, 5 < $p_T^{ch jet}$ < 20 GeV/c
- scaling for $z^{ch} > 0.2$ for higher jet pT bins

Particle ratios in jets

- strangeness content strongly enhanced for $z^{ch} \rightarrow 1$
- leading baryons suppressed

Event generator comparison CiRfSE

- comparison to PYTHIA $(p_T \text{ ordered parton shower},$ Lund string fragmentation)
- data reasonably well described
- best reproduced by Perugia tune without color reconnections

Jets and Quark-Gluon Plasma

QCD phase transition

- in heavy-ion collisions at ultra-relativistic energies, a quasi macroscopic fireball of hot, strongly interacting matter in local thermal equilibrium is created
- lattice QCD predicts phase transition to deconfined, chirally symmetric matter
- energy density from the lattice: rapid increase around T_C, indicating increase of degrees of freedom (pion gas -> quarks and gluons)
- T_C = 154 +/- 9 MeV E_C = 340 +/- 45 MeV/fm³

QCD matter at LHC

- direct photons: prompt photons from hard scattering
 + thermal radiation from QCD matter
- low-p⊤ inverse slope parameter: T_{eff} = 297 +/- 12^{stat.} +/- 42^{syst.} MeV/c
- indicates initial temperature way above TC

arXiv 1509.07324 [nucl-ex]

Partons in heavy-ion collisions

- hard partons are produced early and traverse the hot and dense QGP
- expect enhanced parton energy loss : `jet quenching' (mostly) due to medium-induced gluon radiation
- 'vacuum' expectation calculable by pQCD : 'calibrated probe of QGP'
- jets sensitive to properties of the medium (energy density, \hat{q} , mean free path, coupling ...)
- ... but also jet-medium interaction not trivial (strong / weak coupling, parton mass / type, fireball dynamics ...)

JET collaboration, arXiv: 1312.5003

50

p_ (GeV/c)

- hadron observables biased towards leading fragment
- \rightarrow study the effect for fully reconstructed jets

PLB 720 (2013) 250

ALICE, Pb-Pb, $(s_{MN} = 2.76 \text{ TeV})$ charged particles, $|\eta| < 0.8$

ALICE (0-5%)

10

20

30

40

В≜

 10^{-1}

0

- high- p_T hadrons `proxy' for jet
- jet quenching for charged hadrons, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

$$R_{AA}(p_{\rm T}) = \frac{1}{T_{AA}} \frac{\mathrm{d}^2 \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta \,\mathrm{dp_T}}{\mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}}/\mathrm{d}\eta \,\mathrm{dp_T}}$$

- difficult due to the high underlying event background not related to hard scattering
- jet reconstruction in heavy-ion collisions :

strong suppression observed, similar to hadron RAA
 -> parton energy not recovered inside jet cone

nucl-ex/1502.01689

 increase of suppression with centrality JEWEL: PLB 735 (2014) YaJEM:PRC 88 (2013) 014905

Reaction plane dependence

- different medium thickness in- and out-of plane
- sensitive to path length dependence of jet quenching: pQCD radiative E-loss : ~L² collisional E-loss : ~L strong coupling (ADS/CFT) : ~L³

Jet v2 : results

- charged jets, R = 0.2
- quantify azimuthal asymmetry via 2nd Fourier harmonic v2
- non-zero v2 jet in semi-central collisions

Jet Structure

- different observables, e.g. radial moment g, p_TD
- comparison to PYTHIA pp reference shows collimation of jet core (R=0.2)

 $p_{\rm T}D = -$

trends reproduced by JEWEL jet quenching model

JEWEL: K.C. Zapp, F. Kraus, U.A. Wiedemann, JHEP 1303 (2013) 080

Perspectives for LHC run 2

• increased CMS energy for Pb-Pb collisions from $2.76 \rightarrow 5.1$ TeV

LHC run 2

Oliver Busch – TGSW 2015 /09/30

 note: also a dependence on parton 'input spectrum' (increased RAA ???)

 \rightarrow measure energy density dependence of jet quenching

- expect (modest) increase in ε, Τ
- quenching strength $\hat{q} \sim s \sim \epsilon^{3/4}$

ALICE in run 2: DCal

- run 2: DCal upgrade
 - significantly extended jet acceptance
 - back-to-back in azimuth (di-jet topology)

- jet cross sections and properties in pp
- identified jet fragmentation in pp
- strong jet suppression observed in Pb-Pb collisions
- non-zero jet v2 indicates path-length dependence of jet quenching
- first look at jet shapes
- looking forward to LHC run 2 !

- Backup -

Jet finder comparison

- kT: sequential recombination
- SISCone: cone algorithm

Multi Template Fit

- TPC multi-template fit
 - best possible description of dE/dx from external reference
 - parametrize dependences on $\eta,$ TPC nClusters
 - templates in transverse momentum (z, xi) slices
- dE/dx in one z slice (0.6 < z < 0.65), 10-15 GeV/c fitted with 4 templates Entries pp (s=7 TeV, p^{ch}_{T, jet} 10-15 GeV/c, z^{ch} 0.6-0.65 ALICE Preliminary anti-k, R=0.4 10³ Measured Multi-template fit $\pi^+ + \pi^-$, template 10² K⁺+K⁻, template p+p, template +e, template 10 (Data - Fit) / Data 0.4 0.2 -0.20.8 1.1 0.6 0.7 0.9 1.2 1.3 $\Delta'_{\pi} = dE/dx / \langle dE/dx \rangle_{\pi}$ ALI-PREL-70018

Method comparison

- uncorrected hadron fractions from Multi-Template Fit and TPC Coherent Fit
- 2 complementary methods obtain consistent results

Jet structure

- 'jet structure ratio' R=0.2 / R=0.3 for charged jets
- sensitive to potential broadening of jet shape

