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LHC & ATLAS Experiment
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ATLAS

• Large Hadron Collider (LHC) is a pp-
collider located at CERN in Geneva, 
Switzerland. 

• ATLAS is among the two generic-
purpose detectors at the LHC. 

• Collected 20 fb-1 (1.1 fb-1)@Run-1(2)

ALICE
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Higgs Boson & Beyond
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• We have discovered a Higgs boson 
at 125 GeV. What is beyond it? 

H→ZZ(*)→4μ
candidate

• Is it the Standard Model Higgs boson, or is it part of an extended 
scalar sector? 

• Is the discovered Higgs boson elementary or composite? 

• Any insights from the perspective of naturalness? 
no theoretical fine-tuning to keep the Higgs mass stable
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Extended Scalar Sector
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1) The Higgs boson could be a part of an extended scalar sector. 
→ There could be more Higgs bosons. 

fnal.gov

© Particle 
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Figure 4: The decay branching ratios of the heavier MSSM Higgs bosons A (left), H (center) and
H± (right) as a function of their masses for tanβ = 2.5. The program HDECAY [65] has been used
with modifications so that the radiative corrections lead to Mh = 126 GeV.

gauge bosons in the case of the H state) not too suppressed, many interesting channels

appear. The branching fractions for the H/A/H± decays are shown in Fig. 4 as functions

of their masses at tan β = 2.5. They have been obtained using the program HDECAY

[65] assuming large MS values that lead to a fixed Mh = 126 GeV value. The pattern

does not significantly depend on other SUSY parameters, provided that Higgs decays into

supersymmetric particles are kinematically closed as it will be implicitly assumed in the

following8, where the main features of the decays are summarised in a few points.

– Sufficiently above the tt̄ threshold for the neutral and the tb threshold for the charged

Higgs bosons, the decay channels H/A → tt̄ and H+ → tb̄ become by far dominant for

tan β <∼ 3 and do not leave space for any other decay mode. Note that these decays have

also significant branching fractions below the respective kinematical thresholds [66]. It is

especially true for the charged Higgs state for which BR(H+→ tb̄)>∼1% forMH± ≈130 GeV.

– Below the tt̄ threshold, the H boson can still decay into gauge bosons H → WW and

ZZ with rather substantial rates as the HV V couplings are not completely suppressed.

– In the window 2Mh <∼ MH <∼ 2mt, the dominant decay mode for tan β <∼ 3 turns

out to be the very interesting channel H → hh channel. As discussed earlier, the Hhh

self–couplings given in eq. (2.15) is significant at low tan β values.

– If allowed kinematically, i.e. for MA>∼ Mh +MZ GeV, the CP–odd Higgs boson can

also decay into hZ final states with a significant rate below the tt̄ threshold as the AZh

coupling (that is the same as the HV V coupling) is substantial. Nevertheless, the A → ττ

channel is still important as it has a branching fraction above ≈ 5% up to MA ≈ 2mt.

– In the case of the charged Higgs state, there is also the channel H+ → Wh which is

8In fact, even in this low tanβ case, the tt̄ decays for sufficiently large masses are so dominant that

they do not lead to any significant quantitative change if SUSY particles are light. In addition, being not

enhanced by tan β, the ∆b correction has no impact in this low tanβ regime.

– 17 –

Two 
electroweak 

singlets?

Two Higgs 
Doublets?

A. Djouadi & J. Quevillon, arXiv:1304.1787
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New Particles@TeV Scale
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2) The naturalness implies that there could be additional interactions & 
particles at the TeV scale. 

→ Also predicted from composite Higgs models. 
Strong dynamics in pictures: QCD
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David Sutherland

• Composite Higgs models predict high mass resonances decaying to 
diboson final states. 

• Also, extra dimension models (e.g. Randall-Sundrum) predict high mass 
resonances that decay to diboson final states. 
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New Particles@TeV Scale
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2) The naturalness imply that there could be additional interactions & 
particles at the TeV scale.
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• Composite Higgs models predict high mass resonances decaying to 
diboson final states. 

• Also, extra dimension models (e.g. Randall-Sundrum) predict high mass 
resonances that decay to diboson final states. 

Diboson resonance searches are very important 
for the post-Higgs LHC physics program!
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New Particles@TeV Scale
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2) The naturalness imply that there could be additional interactions & 
particles at the TeV scale.
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• Composite Higgs models predict high mass resonances decaying to 
diboson final states. 

• Also, extra dimension models (e.g. Randall-Sundrum) predict high mass 
resonances that decay to diboson final states. 

Diboson resonance searches are very important 
for the post-Higgs LHC physics program!

I will present selected Run-1 results on this topic
& will briefly mention prospects for Run-2



Dibosons from Heavy Higgs
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Heavy H→ZZ
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• H→ZZ is a promising channel to search for a heavy Higgs boson in the low 
tan β case. 

• H→ZZ→4l (e,μ), llvv, llqq, vvqq channels are considered. Each channel 
has different sensitivity in signal mass range & is complementary. 
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Figure 4: The decay branching ratios of the heavier MSSM Higgs bosons A (left), H (center) and
H± (right) as a function of their masses for tanβ = 2.5. The program HDECAY [65] has been used
with modifications so that the radiative corrections lead to Mh = 126 GeV.
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does not significantly depend on other SUSY parameters, provided that Higgs decays into
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tan β <∼ 3 and do not leave space for any other decay mode. Note that these decays have
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– 17 –

H→ZZ



TGSW 2015, September 30, 2014Hideki Okawa

H→ZZ→4l & llvv
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• Leptonic channels have very clean final 
states & good signal/BG separation.  

• 4l: Limited event yields, but good mass 
resolution (1–3.5%) & sensitivity in the 
low-mass range.

• llvv: High event yields, but limited mass 
resolution (7–15%), but high signal 
sensitivity in the intermediate & high 
masses.

• The most dominant BG is qq→ZZ for both 
channels. It is estimated at the NNLO 
including the shape of distributions. 

• Non-ZZ BGs are validated or directly 
estimated from data. 
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H→ZZ→llqq & vvqq
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• Very high event yields, but also 
suffer from large backgrounds. 

• llqq: High mass resolution 
(2–-3%) & high sensitivity in the 
high mass region. 

• vvqq: Limited mass resolution (9–
14%), but high sensitivity in the 
high mass region.
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• Tagged (llqq, vvqq): With two b-jets. Better signal over noise than the untagged. 

• Merged (llqq only): Two partons merged in one jet. Occurs more often in the high mass signals. 

• Backgrounds are difficult to model by simulation. Estimated by simultaneous 
fits in various control regions (Z+jets CR, top CR).
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H→ZZ Results
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• No excess is observed in all the 4 channels. The results are 
combined to set limits on the heavy Higgs production cross section x BR 
& Two Higgs Doublet Model (2HDM) scenarios. 

• Surpassed the previous results from the Tevatron & LHC@7 TeV & 
provided constraints on phase space of the extended scalar sector. 
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Other Diboson Resonances
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Other Diboson Resonances

14

• Various physics beyond the Standard Model (BSM) predicts presence of high 
mass resonances (e.g. Extended Gauge Model, bulk Randall-Sundrum, 
minimal walking technicolor, composite Higgs model, etc.)

• In many cases, the branching ratios to diboson final states are sizable.

• m(G*)=1 TeV: BR(G*→W+W-)~20%, BR(G*→ZZ)~10%. 

• Due to the large BR, the highest mass reach comes from hadronic 
decay channels from the W/Z/H bosons. → Boosted boson tagging (next slide)

g

g
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W+/Z/H

W-/Z/H

q

q(′)

W′, R1, R2
WZ, WH, ZH
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Boosted-Boson Tagging
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• Bosons decaying from high mass resonances are highly boosted. 

V V
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• High-pT bosons can be reconstructed as 
single large-R jets (Cambridge-Aachen, R=1.2). 

• Split-filtering algorithm for grooming.

• Require symmetrical splitting between the 
subjets coming from decay quarks. 

Boson Tagging in ATLAS Run-1 Diboson Analyses
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VV→qqqq (JJ) Search
• Fully hadronic final state. 

Bump hunting on the 
invariant mass of two 
boosted-boson jets. 

• Jet mass (26 GeV window 
around mW/Z) → Overlaps 
between the WZ/WW/ZZ 
selections. 

• Local significance: WZ 
(3.4σ), WW (2.6σ), ZZ (2.9σ) 

• Global significance: WZ 
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5.2 Boson tagging requirements

The two jets with the highest transverse momentum each must satisfy the three boson tagging require-
ments discussed in section 4: py � 0.45, ntrk < 30, and |m j � mV | < 13 GeV, where mV is the peak
value of the reconstructed W or Z boson mass distribution. For the W0 ! WZ search, this final cut sets
mV equal to the peak reconstructed W boson mass when applied to the lower mass jet, and to the peak
reconstructed Z boson mass when applied to the higher mass jet.

The expected e�ciency of these boson tagging cuts applied to signal events is evaluated using the MC
signal samples described in section 3. For signal events passing event topology requirements on the mass-
drop filtering, ⌘, the rapidity di↵erence, and the pT asymmetry, the average e�ciency of the tagging cuts
for each of the two leading-pT filtered jets s approximately the same in the GRS ! WW and GRS ! ZZ
samples, and ranges from 44.0% in the mGRS = 1.2 TeV sample to 33.9% for the mGRS = 3.0 TeV sample.
Figure 2(b) shows the selection e�ciency of the event selection and tagging requirements for signal events
with resonance mass within 10% of the nominal signal mass for the W0 ! WZ and bulk GRS ! WW
and bulk GRS ! ZZ benchmark models, with both statistical and systematic uncertainties included in
the error band. The average background selection e�ciency of the tagger for each of the two leading-pT
filtered jets in simulated QCD dijet events satisfying the same event selection requirements ranges from
1.2% for events with dijet masses between 1.08 TeV and 1.32 TeV, to 0.6% for events with dijet masses
between 2.7 TeV and 3.3 TeV.

5.3 Dijet mass requirement

The invariant mass calculated from the two leading jets must exceed 1.05 TeV. This requirement restricts
the analysis of the dijet mass distribution to regions where the trigger is fully e�cient for boson-tagged
jets, so that the trigger e�ciency does not a↵ect its shape.

6 Background model

The search for high-mass diboson resonances is carried out by looking for resonance structures on a
smoothly falling dijet invariant mass spectrum, empirically characterised by the function

dn
dx
= p1(1 � x)p2�⇠p3 xp3 , (1)

where x = m j j/
p

s, and m j j is the dijet invariant mass, p1 is a normalisation factor, p2 and p3 are
dimensionless shape parameters, and ⇠ is a dimensionless constant chosen after fitting to minimise the
correlations between p2 and p3. A maximum-likelihood fit, with parameters p1, p2 and p3 free to float, is
performed in the range 1.05 TeV < m j j < 3.55 TeV, where the lower limit is dictated by the point where
the trigger is fully e�cient for tagged jets and the upper limit is set to be in a region where the data and
the background estimated by the fit are well below one event per bin for the tagged distributions. The
likelihood is defined in terms of events binned in 100-GeV-wide bins in m j j as

L =
Y

i

�ni
i e��i

ni!
, (2)
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the analysis of the dijet mass distribution to regions where the trigger is fully e�cient for boson-tagged
jets, so that the trigger e�ciency does not a↵ect its shape.

6 Background model

The search for high-mass diboson resonances is carried out by looking for resonance structures on a
smoothly falling dijet invariant mass spectrum, empirically characterised by the function

dn
dx
= p1(1 � x)p2�⇠p3 xp3 , (1)

where x = m j j/
p

s, and m j j is the dijet invariant mass, p1 is a normalisation factor, p2 and p3 are
dimensionless shape parameters, and ⇠ is a dimensionless constant chosen after fitting to minimise the
correlations between p2 and p3. A maximum-likelihood fit, with parameters p1, p2 and p3 free to float, is
performed in the range 1.05 TeV < m j j < 3.55 TeV, where the lower limit is dictated by the point where
the trigger is fully e�cient for tagged jets and the upper limit is set to be in a region where the data and
the background estimated by the fit are well below one event per bin for the tagged distributions. The
likelihood is defined in terms of events binned in 100-GeV-wide bins in m j j as

L =
Y

i

�ni
i e��i

ni!
, (2)

10

16
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WV→lvqq (lvjj, lvJ)
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• 1 lepton+Missing ET+jet(s) 
final state. 

• Signal regions are split into 
3 categories.

• Low/high-pT resolved (lvjj) 
& high-pT merged (lvJ)

Eur. Phys. J. C (2015) 75:209
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• W/Z+jets, ttbar BGs: estimated from MC simulation. 

• Multijet BG: estimated with data. 

• No excesss observed in this channel. Excluded 
m(G*) < 760 GeV & m(W′)<1.49 TeV@95% CL. 
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ZV→llJ Search
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• 2 same-flavor leptons (compatible with Z) & jet(s) final state. 

• Signal regions are split into low/high-pT resolved (lljj) & high-pT merged (llJ) like the 1-
lepton search. 

• Dominant BG is Z+jets. Estimated with MC simulation with normalization & shape 
corrections applied from control regions. 

• No excesss observed in this channel. Excluded m(G*) < 740 GeV & m(W′)<1.59 
TeV@95% CL. 
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Eur. Phys. J. C (2015) 75:69 
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WZ→lvll Search
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• Fully leptonic (e,μ) channel. Very clean signatures, but low branching 
fractions. 

• Z mass constraint on the 2 same-flavor leptons. W reconstructed from the 
remaining lepton & Missing ET using the mW constraint.  

• No excesss observed in this channel. Excluded m(W′)<1.52 TeV@95% CL. 
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VV Search Combination
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• JJ, lvqq, llqq, lvll channels are combined to search for high mass 
resonances decaying to WW, WZ, and ZZ. 

• No significant excess is observed throughout the mass range. Excluded 
m(G*) < 810 GeV & m(W′)<1.81 TeV@95% CL.

• Local significance on WZ@~2 TeV is reduced from 3.4σ to 2.5σ.

ATLAS-CONF-2015-045
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Run-2 Prospects
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Mysteries to be Resolved
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• ATLAS & CMS provided similar results in Run-1, but yields are not consistent among 
the final states. Increase in statistics will definitely help to understand the excesses. 
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LHC@13 TeV
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46 

13 TeV / 8 TeV inclusive pp cross-section ratio !
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At 1034 cm–2 s–1 @ 13 TeV 
pp the LHC produces:!
-  200 Hz W → lν
-  19 Hz Z → ll!
-  8 Hz top pair!
-  0.5 Hz Higgs!

• Significant increase (a factor~10) in cross section expected for MX~TeV 
production@13 TeV. 

• We may be able to confirm/exclude the Run-1 excesses with early 
Run-2 data!
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Summary
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• Presented Run-1 results with the full 8 TeV dataset (20 fb-1) regarding 
the diboson resonance searches. 

• Diboson resonances may arise from heavy Higgs bosons or other new 
particles predicted from BSM physics. 

• Small excesses were observed in the fully hadronic channel using the 
boosted-boson tagging. 

• We may already be able to understand the phenomenon with early 
Run-2 data. 

• Diboson resonance searches are very important & urgent for the post-
Higgs LHC physics program in Run-2!
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hMSSM
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LHC
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W/Z Discrimination
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Reconstructed Jet Mass [GeV]
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Missing ET Resolution
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